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1 Radiation Emission

1.1 Maxwell’s equations

Maxwell’s equations in the SI (rationalised) system are:

V-E=p/e V-B=0
_ . (1)
VxE=-B V x B = uoj + E/c?
We have already discussed how this admit wave-like solutions in vacuum (p = 0 and j = 0) These
propagate at the speed of light and are, in general, polarized.
The inhomogeneous equations (giving V - E and V x B) describe how such waves are generated and
How they are detected.

12 T}lé electromagnetic spectrum

1.2.1 The different wave-bands
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Figure 1: The electromagnetic spectrum and the terminology used to describe the different ‘bands’.
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1.2.2 The optical and radio atmospheric windows
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Figure 2: The atmospheric opacity is shown in more detail here: optical light occupies a rather narrow part
of the spectrum around ~ 4000A. There are some other windows in the IR. Water in the atmosphere is
a significant source of opacity. By going to high altitude, very dry, sites (e.g. ~ 5000m in the Atacama
desert in Chile) it is possible to do ‘sub-mm’ astronomy from the ground. The other important window is
in the radio for wavelengths between a few ¢cm and about 10m. Lower frequency radiation cannot propagate
through the ionosphere since it is below the ‘plasma frequency’.

Figure 3: The ESO ALMA observa-
tory. Situated in a very high (5km) and
dry site in the Atacama desert in Chile,
ALMA observes in the range 0.3mm <
A < 3mm. The hardware is a com-
bination of the 66 dishes, that sample
the electric field coming from directions
within the ‘primary’ beam with width
0 ~ /D, and the supercomputer below,
which calculates the two point function
of the electric field. The Fourier trans-
form of this gives images with angular
resolution 6 ~ /L where L is the size
of the'array. It detects mostly emission
from molecules, and probes deep into
dense objects like molecular clouds.

ALMA observatory ¢

’ F]

&



1.3 Mechanisms for generation of EM radiation
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Figure 4: Sources of radiation used
in astronomy (and elsewhere). Colour
of boxes indicates the frequency. The
grey boxes are not sources of EM radia-
tion per se as scattering is re-processing
of pre-existing radiation, and cosmic
rays are particles, not EM radiation.
Aside from the wavelength, an impor-
tant qualitative distinction is whether
the spectrum consists primarily of lines
or ‘continuum’. Another is whether or
not the radiation is polarised. At bot-
tom left is LIGO - the large interfer-
ometric gravitational wave observatory,
whose v ~ kHz observing frequency
would put it way off to the left on this
plot.

e what are the characteristics of spectrum - continuum or lines? — polarisation?

1.4 Radiation from a compact source

e ITow does the energy density vary at large distance (3> A or source sizc)?

— the energy flux density must fall off as 1/r? (conservation of energy)

— energy density is proportional to energy flux density (v = c).

e How does the field strength vary with distance?

- u= (B +|BJ*)/2 so |E[,|B| oc 1/r

e how does this compare to electro- and magneto-static fields?

— for monopole charge? or for a dipole (e.g. magnet)?

— a compact charge distribution can be decomposed into monopole, dipole, quadrupole . ..

* monopole: E ~ q/r?

s dipole charge E ~ gd/r® (same r-dependence for dipole magnet)

* quadrupole E ~ ¢Q/r*

— all of these fall off much faster than the radiation fields

1.5 Radiation from an accelerated charge (Larmor’s formula)

There are a wide range of processes that generate EM radiation

e What is the common feature of all of these processes?

e Does a charge in uniform motion radiate? Would this be compatible with special relativity?

e This leads us to suspect that it is acceleration of charges that gives rise to radiation.



|E(n), | = d/4neyr Figure 5: In the ‘near field’ —ie. 7 < A = ¢/v of an
____________ d = gx = dipole moment oscillating charge with displacement x(¢) the electric

X = X 00s(2aut) el E , field is equal to that one would compute for a static

Elrweﬂr charge. It has a component E; along the axis which is

0 :E > steady and a ‘transverse’ component E | that is fluc-
I tuating.

1.5.1 Order of magnitude estimate for power radiated by an accelerated charge

e Consider an oscillating charge ¢ with displacement x(t) = xg cos(wt)

This is like a radio antenna

— known empirically to radiate at frequency w
— or v = w/2m in Hertz

— it has a dipole moment d = gx

o At r < X\ - ie. in the ‘near-field’ — the electric field is like that of a stationary charge E = ¢ /4meqr?
- approximately radial

e but it has a small transverse component with |E, | = (z/r) x (q/4weor?) (see figure 5)
e so the transverse component of the field at the transition r ~ A is, to order of magnitude,
—  Ei(r=\)~d/dme®

e at r > \ — the ‘radiation zone’ — we expect a transverse electric field F, (r) that falls of inversely with
r (conservation of energy)

o key assumplion: at the transition region where r ~ \ we can use either the near-field or radiation
zone formulae, so, for r > A

—  Ei(r) ~ (d/4mepr?) x (\/7)

e if we square this we get the energy density u ~ eoEi

e and if we multiply that by ¢ we get the energy flux density cu ~ eocEJQ_
— which falls off as 1/72 as befits an energy conserving flux density

e and if we multiply that by 4772, the area of a sphere at distance r, we get the total power radiated

— |P=cux (4nr?) ~ 22¢%c/eg\* ~ (12/6003

e Key features:

— power proportional to dipole moment (squared) and 4th power of frequency

— or (charge x acceleration)?

1.5.2 Larmor’s formula from retarded potentials

e To obtain an accurate expression — including dimensionless factors of order unity — we need to use the
‘retarded potentials’ of Lienard and Wiechert.

— these are the exact solutions of Maxwell’s equations for the electric and magnetic potentials
(p(r,t), A(r,t)) of a moving charge or charge/current distribution (p,j) where j is p times the
mean velocity v

— the fields are B=V x A and E = -V — A

— they can be obtained by considering the potential to be the sum of the potentials generated by
a set of infinitesimal spatial cells



— the cell at the spatial origin has contains a charge ¢(¢) which has a velocity v(¢). It turns out that
the potentials at position r and time ¢ are the same as for a static charge and current element,
but as they were at time ¢’ =t — r/c; the retarded time

— so the potential — and hence the fields — ‘here and now’ are determined by the charge and current
distribution on our ‘past light cone’

— summing over cells gives
x  p(r,t) = 47360 @' p(x',t)/|r — 1’|
x  Ar,t) =2 [ B ¢) /v — 1|
x where t/ =t —|r —1/|/c

e if we consider a charge confined to a distance from the origin |r’| much less than the wavelength, then,
to leading order, we can put j(r/,¢') ~ j(r',t — r/c)

e and considering a point charge, so j(r/,t) = qv(t)0®) (r' — r'(t))
e we have A(r,t) ~ (47) tuoqv(t — r/c)/|r —v'(t — r/c)| =~ (4m) Tpoqv(t — r/c)/r

e the B-field is the curl (i.e. combination of spatial derivatives) of A which, for » > X (i.e. in the
radiation zone), is dominated by the r-dependence of v(t —r/c)

— B ~0p A~ pugqdr(v(t —r/c)/T) ~ qv/er = d/er
e and squaring this gives the energy density and we recover the same result as above

e putting in the factors of order unity results in Larmor’s formula:

- P= q2a2/67reoc3

— where a is the acceleration

Figure 6: A commonly used figure to visualise the field from
a moving charge. I think it is better to think of the magnetic
potential from a small oscillating dipole. This has an overall
radial fall-off with A ~ j/r, but it has a fluctuating sign. The
pattern of fluctuations moves out at the speed of light. The curl
of A gives the magnetic field is on the order of B ~ A /A, and
also has an overall B o 1/ fall-off.

1.5.3 Implications of Larfnor’s formula

Larmor’s formula has many applications and implications:

— Radiation by (classical) atoms in Rutherford’s model

e if Larmor’s formula were applicable to atoms — considered as being like little ‘solar systems’ with
electrons orbiting the nucleus — the electrons would rapidly lose energy and spiral in to the nucleus

e this would be catastrophic for the theory

— Scattering of light by molecules, dust grains ...

This explains, in a general way, why is the sky blue?



for a scattering charge which is ‘tethered’, the displacement (and therefore the dipole moment d) is
proportional to the electric field E of the incoming radiation

we can write the power in the scattered radiation as the incoming energy flux density (which is o< £?)
times an area:

— this defines the scattering cross-section o

— and more generally we can talk about a differential scattering cross section do/dS) — a function
of direction n — giving the energy scattered per solid angle

. ..2 .
and, since d~ ~ w*d?, the total cross-section scales as the 4th power of frequency

so higher frequencies are much more efficiently scattered

— Scattering of light by electrons

(@)

called ‘Thomson scattering’ (if photon energy < electron rest mass)
here the electrons are not tethered, so the dipole is not d < E but d o< E /w?

so the cross section is independent of frequency

- ’aT = (6m) " (q?/eomec?)? = 6.69 x 10729m?

unpolarised radiation scattered by electrons becomes polarised (see figure 7)

— the degree of polarisation being proportional to the quadrupole moment of the incident radiation

— s0 observing polarisation is a kind of remote sensing of the intensity incident on the scatterers

— this provides an important diagnostic of the ‘epoch of reionisation’ when the first astrophysical
sources ionised the previously neutral gas

and polarised radiation has its polarisation modified

— this being described by an equation of radiative transfer with a matrix-valued, directional depen-
dent, cross-section that tells us how the energy flux density in the different polarisation states -
i.e. the Stokes parameters — get modified in the scattering process

|y Polorized
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i 4 scattered in
> Radiation this plane
primarily
scattered
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Figure 7: Polarisation of Thomson

. scattering.
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1.5.4 X-ray emission from hot gas

we will also use Larmor’s formula when we compute compute the power radiated by electrons being
deflected by ions in a hot plasma — so called ‘thermal bremsstrahlung’

— the motion here is not simple harmonic oscillatory motion
— the acceleration is a ‘pulse’ with width in time 7 ~ b/v where b is the ‘impact parameter’

— and this should really be computed quantum mechanically

but we can still use Larmor’s formula to compute the mean power radiated per collision and its
distribution over frequency



1.5.5 Cyclotron and synchrotron emission

The mechanism by which electrons create radio emission is sketched in figure 8.

'i 5 g “ ¢ 4 G . .
O waves g g charged particle (slectron or prUil  Pigure 8: Electrons gyrating in a magnetic field are accelerated

magnetic field

and therefore radiate according to Larmor. If they are non-
relativistic this is called cyclotron radiation and if they are
% % fadiojwayes relativistic it is called synchrotron radiation.

e the equation of motion for a charge in a magnetic field is

e p=g¢gxxB

e where dot denotes d/dt

e the relativistic 3-momentum is p = dx/dr where 7 = t/7 is proper time and v = 1/3/1 =2/
e so this gives the proper acceleration, for a relativistic electron,

o d’x,/dr?= Gpreper = YaeB

e and so the power radiated (in the rest-frame of the electron) is

e Px~y%B?

e but the power is a Lorentz invariant

— it is AE/At with both energy and time transforming like time-components of a 4-vector

The radiation in the observer’s frame is tightly beamed. So we would not see a simply sinusoidal field
from a single charge, rather we would see a series of pulses of frequency boosted by a factor ~ relative to
the orbital frequency as illustrated in figure 9.

The fact that P o< v? while the energy of the particles is E o 7 means that the fastest electrons (those
which emit the highest frequency radiation) lose energy more rapidly than lower energy ones.

So by measuring the cut-off in the spectrum at high frequency we can determine roughly when the
electrons were ejected from the source.

Figure 9: Accelerating charges radiate with a quadrupole pat-
tern in their instantaneous rest-frame. In the observer’s frame,
and for a relativistic electron, this radiation becomes tightly
‘beamed’

— Some questions to consider:

e Q: How would a molecule with no dipole moment, but with an oscillating quadrupole charge distribution
radiate?

e Q: what about gravitational radiation? Can something like a black-hole binary have a dipole moment?

9



Flgure 1. The glant radio galaxy Hercules A. Radio synchrotron jets emerging from the optical host
of the galaxy mark the presence of magnetic fields roughly 1 milllon light-years In scale. Credit:
NASA, ESA, S. Baum and C. O'Dea (RIT), R. Perley and W. Cotton (NRAO/AU1/NSF), and the Hubble
Heritage Team (STScI/AURA)

Figure 10: Radio image of the ‘double-lobed’ synchrotron radiation emission from relativistic electrons
emerging from the nucleus of the elliptical galaxy Hercules-A.

2 Radiation and absorption by atoms and molecules

2.1 Atomic physics before quantum mechanics
o Greeks ...Dalton ... Avagadro/Loschmidt
— Dalton is famous for the atomic theory
x what was the evidence for this?

— Avagadro’s number was determined in the early 19th century and gave the mass of an atom
* how?

— and the size of the atom was known to be about ~ 1071%m (14)
+ how did they know all this?
x was it universally accepted?

e Electrons were known to be particles, not waves
— Crooke’s experiment — sharp shadow

J.J. Thomson: cathode rays carry charge - discharge of gold-leaf electroscope
and they have a high charge-to-mass ratio (easily deflected)

he proposed they live in atoms, with positive charge smoothly distribited
% the ‘plum-pudding’ model

e Rutherford model of the atom

— he scattered a-particles off a thin gold film
x some of these were scattered to large angle
— the positive charge is concentrated in a very small volume (the nucleus)
* suggests analogy with gravitation in the solar system with inverse-square gravitational at-
traction replaced by inverse squared electrical attraction
— Q: in a hydrogen atom, what accelerates more

the electron or the nucleus? If the electron and
nucleus had the same mass, how would this affect the ‘catastrophe’.

10



JJ THOMSON EXPERIMENT (1897)

1

2.2  Quantum mechanics & the ‘Bohr-atom’ model

Figure 11: Crooke’s experiment
(left) showed that cathode rays
cast sharp shadows. J.J. Thomson
performed numerous experiments
to show that cathode rays carry
electric charge and thus must be
particles. He got the Nobel proze
for this. His son G.P. got the No-
bel prize for showing that they are
waves.

Figure 12: Following Crooke’s and
Thomson’s experiments the pre-
vailing model for atomic structure
was the ‘plum pudding’ model in
which electrons were particles dis-
tributed in a spread out positive
charge distribution. Rutherford’s
gold-film a-particle scattering ex-
periments showed that the positive
charge had to be concentrated in a
tiny nucleus.

Atoms were known to emit and absorb radiation at discrete frequencies, with patterns in frequency: v, =
constant(1/n? — 1/m?). The first (though somewhat flawed) explanation of this was by Niels Bohr — the
‘Bohr atom’.

2.2.1

The Bohr-atom

e for classical point electron particle orbiting a hydrogen nucleus:

If

Q:

Q:

— F=ma = e?/4dmweyr?

angular momentum is quantized in units of h —

2

= W% = g2

— multiply F' = mea by mer> to eliminate v:
h?

252032 2

— =  meelr/dmeg = m2v¥rl =n

— gives

Ta— 47Tn2h260/m562 ‘

— so energy ~ 1/n?
how big is a hydrogen atom?

— A: 7y = 47h2ep/mee® = 0.53An2

mevr = nh

— Q: what about singly ionized helium? or other single electron ions with nuclear charge Ze?

what are the energy levels?

1 Ze?

D) dregr

1

2

Ze?
47T€0

P X PR,
dwegh? ~— n?

mee2Z 1

= ——MeC

1 ,a27?

2 n?

— the factor —1/2 coming from the ‘virial theorem’: 2I'+V =0= E=T+V = -V/2

where ‘ a = 2 /4neghic ~ 1/1371 is the fine structure constant

— a < 1 so energy < electron rest-mass energy MeC?:

11



Rutherford's Gold Foil Experiment Observatian interpretation
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. E(eW) Figure 14: Niels Bohr’s model for the hy-

& — o drogen atom was that the electron orbits

n=3% : 038 the nucleus like a planet orbiting the Sun,
4 ‘1 E o83 Bavdbut with angular momentum mevr being

’ l Puhen quantised in units of i = h/2w. The most

n=2 / 2 Iy T e tightly bound orbit is that with the lowest
n=1 ¢ VWV iies angular momentum (n = 1) and the ener-
% 7Ze AE = hv = Lynan gies are proportional to 1/n?, tending to
croma 2670 @8 M — 00.  The energy of a pho-

. “3¢ aw ton emitted (or absorbed) is hv = AE,

Enngy levels of the hydrogen atom with some of the the diﬂerence in energies between the or-
transitions between them that give rise to the spectral

linesindicated bits. This explained the empirical observa-
tion that v = constant x (1/n? — 1/m?).

— so the non-relativistic Schroedinger equation is a good description (for low Z at least)

Features of the “Bohr-atom”:
e wrong in detail (e.g. for the angular momentum) but gives correct energy levels

— with hvy,, = B, — E,, explains patterns seen by spectroscopists

— the frequency of light emitted (or absorbed) in transition n — m

2.2.2 Spectroscopist’s terminology
e ground state n =1
e Lyman seriesn >2—n=1
—Lyaxn=2—1;LyS:n=3—1;...
— Lyman limit: n =00 — 1
* a photon emitted in (re)combination of ion plus a low-energy free electron to ground state
has energy ‘E = a?m.c?/2 ~ 13.60\/1 and wavelength\ = 912A.

« photon energy needed to dissociate (ionize) a H-atom in the ground state

« also called the Rydberg energy or the ionisation potential

— Lyman transitions are in the ultra-violet band
e Balmer series n >3 —n =2

— usually called Ha (n =3 — 2, A = 6563A); HB (n =4 — 2, \ = 48614A)

— these transitions give/absorb optical photons (H, gives the red glow of nebulae)

12



2.2.3 Radiation vs. orbital frequency
e note that the classical velocity v. = \/2E/m — hw, = hv./r = a®m.c?/n3

— the frequency of radiation radiated according to Larmor for a classical particle orbiting with
angular frequency w,

— approximates the Bohr frequency for transition n —n —1 for n > 1

— so a highly excited H-atom making transitions n —n—1 — n — 2... radiates quasi-classically

2.2.4 Radiation from atoms in the Schrédinger picture

The probability current times the charge is

. 1iqh
i=—

5 (VY —cc) 3)

o Energy eigenstates of Schrodinger equation have steady currents so, classically, would not be expected
to radiate.

e But a superposition of two eigenstates 1) = 9, + 1y, does have fluctuating current, charge density.
e And it fluctuates at the frequency given by the energy difference.
A more accurate treatment would involve:
e (non-relativistic) Schrodinger equation: proper accounting for orbital angular momentum
e relativistic corrections
e clectron/proton spin-flip transitions (radio frequency)

— these give hyperfine transitions
— and particularly the neutral hydrogen (HI) line at A = 21cm

— very important in radio astronomy

— Calculation of rates of transitions (schematic)

e we treat the modes of the radiation as simple harmonic oscillators

—  H=mi?/2+ kz?
— has energy eigenstates |n) with E, = (n + 1/2)hw
— can be generated by applying the creation and destruction operators:
— al,a~ax +ip (in suitable units)
In+1) = v/n+ 1al |n)
In — 1) = v/na|n)
e Set up eigenstates for radiation (occupation number eigenstates |. .. 7y ...)) and atom (orbital quantum
number n)

e The classical interaction energy is Hiy = f d®zA -j. Treat this as a perturbation in Schrodinger’s
equation

— i.c. replace A and j by operators

— use the ‘interaction picture’ (hybrid of Heisenberg and Schrédinger pictures)
* operators have time dependence of unperturbed eigenstates (like Heisenberg)
* states evolve (like in Schrédinger) but only due to the perturbation

e Schrédinger equation:

13



d
ih— = 11in
° 7 o ) = Hint| )

— solve this iteratively

to zeroth order nothing happens: initial state |7) is unchaanged

to first order |i) — [t) = |i) + ih [ dt Hin |7)

calculate - to 1st order- amplitude (f|t) to be in a different state |f)

i.e. amplitude for transition like n — m and nyx — nyi + 1:

<m| <1k| th dtHint |Ok> |n>

this contains (m|j|m) which oscillates at frequency hw = I, — Ey,

and gives non-vanishing amplitude if the radiation mode k has that frequency

square and divide by time to get the rate of transitions

most rapid are electric-dipole transitions: where (n|m) has a fluctuating electric-dipole moment

but with very low density astrophysical plasmas we also observe electric quadrupole and magnetic-
dipole transitions

— not seen in the laboratory as collisions ‘de-excite’ more rapidly

for this reason these are called ‘forbidden’ lines

3 Stellar atmospheres and spectra
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Figure 15: Spectrum of the sun compared to a black-body.

e to a crude — but often very useful — approximation stars emit black body radiation

— characterized solely by the temperature 7'
— T can be determined from a single ‘colour’
— for ‘main-sequence’ stars this (and the size) gives the intrinsic luminosity L

— and hence distance from observed flux-density

e a good example is the sun (see figure 15)

e but spectra of some other types of stars have significant departures from BB form (see figure 16)
— primarily absorption as radiation propagates through the stellar atmosphere

— as seen in the solar spectrum at around 4000 A
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e requires solution of equation of radiative transfer

— transport equation for the brightness I,

— in vacuum, I, is constant along a path

— deep inside a star, matter is in thermal equilibrium at the same temperature as the radiation so
I, =B,

but in the atmosphere — where optical depth is small or modest — absorption/emission by atoms
and scattering modify the emitted spectrum

e Practical implications:

— allows determination of the chemical composition of the (atmosphere) of the star
— discrimination between MS and non-MS stars from spectra

* e.g. by determination of the surface gravity via pressure broadening
— determination of photometric redshifts for galaxies from e.g. the ‘H & K break’

* Calcium ions = H and K-lines
* observationally inexpensive — obtained from broad-band colours

£ 38000 K 9500 K 5750 K 3750 K Blackbody spectra. “'BOV A0V G2V Mol Stellar spectra ]
1 i E
3 r H -
L F Ly E
C B E ]
'E o Optical By F-o ' E
&  Ultraviolet Near-infrared Mid-infrared 3 [ Ultraviolet Mid-infrared 1
¥ ¥ F ]
EF © E  Johnson ~|Y\B\Y s el E
u = Sensitivity of human eye £ ﬂ“ers/ \Near-IH filters
0.1 1.0 10.0 0.1 1.0 10.0
Wavelength (zm) Wavelength (zm)

Figure 16: On the left are shown some black-body (i.e. thermal) spectra and an indication of the wavelengths
of light that the human eye is sensitive to. On the right are shown some spectra of actual stars — some of
which differ substantially from black-body form. On the bottom are shown the ‘transfer functions’ giving
the transmission of filters used by astronomers.

Atomic emission is also important in nebulae. E.g. the prominent red glow of H-a. Note that excitations
can be radiative or collisional.

4 Saha’s equation for equilibrium ionization & excitation for a plasma

4.1 Inferring the composition of stellar atmospheres: the problem

Stars exhibit absorption features that derive from hydrogen and other atoms.

From such measurements one would like to infer the chemical composition of stars.

in order to do this, one needs to know, in addition to the absorption cross-section

— given the temperature, what fraction of the atoms of each element will be neutral?
* a pre-requisite for absorption
— and if we are dealing with transitions from an excited level, we need to know. what fraction of

the neutral atoms are in that excited state?

Lets consider hydrogen for simplicity: What is the physical state of hydrogen in the atmosphere of a
star like the sun say. There are two questions:

1. what is the fractional excitation? e.g. f(n =2)/f(n=1) — Balmer lines

2. what is the fractional ionization? (or equivalently neutral fraction freutral = 1 — Fionised)
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e the answer to (1) given by Boltzmann’s formula:
— for example, the relative abundance of hydrogen atoms in the first excited state (n = 2) to the
ground state (n = 1) is na/ny; = exp(—AE/kgT).
— One electron volt corresponds to a temperature of ~ 11, 000K
~ AE(2 1) ~ 10eV ~ 10° K.
x Q: what is excitation of the Sun (7" ~ 6000K)?

e (2) is more difficult

— naively one might use Boltzmann’s formula with AE = x ~ 13.6eV
x would predict very low ionization

— another approach might be to set up a system of differential equations with rates for ionization,
recombination etc

x but this would be very arduous

Vi v v y

P p »
o ¢ |6 |6
~E, /T

n=0 1 2 3

Figure 17: Illustration of Saha’s calculation. The idea is that a ‘sub-system’ of a larger subsystem will occur,
in thermal equilibrium, with probability given by Boltzmann’s law. Here the sub-system is one proton and
one electron. This may be found in the neutral state (a Hydrogen atom) as shown in the left panel (n=0).
Or it may be found to be ionized, as in the other panels. The probability for any of these is smaller than
the probability of the neutral state, since they have higher energy, but to obtain the net probability to be
ionized we need to sum over all possible ways for the sub-system to be ionized (with weights proportional
to exp(—E/kgT)). The result, as Saha showed in 1920, is that the ionisation fraction is greatly enhanced
with respect to a naive application of Boltzmann’s law.

4.2 Saha’s solution

e assume thermal equilibrium: use Boltzmann’s law to calculate the relative probability to find a proton
+ electron to be in either one of the neutral, but possibly excited, states or in an ionized state

— but allow for the fact that there are, crudely speaking, many ways more ways for a proton-electron
pair to be ionized as there are many possible values for the momentum of the electron

— the upshot of this is that hydrogen becomes ionized at a much lower temperature than that at
which kg1 is equal to the ionization potential

e consider a volume containing, on average, one free electron

- V=L3=1/n,
—so Ak=2r/L = Ap=hAk=h/L = Av=h/lm

Boltzmann: n(v)/n1 = exp(—(x + mv?/2)/kgT)

— where n; is the number density of atoms in the ground state

— and y = 13.6eV is the ionization potential

but there are many possible values for v, so the net probability is higher

Q: how many possible v values are there for the electron?
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momentum space: occupation number f(p) Figure 18: A non-degenerate gas of particles in ther-

mal equilibrium at temperature 7' has mean occupa-
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tion number f(p) o exp(—E(p)kgT) where E(p) =
Ip|?/2m; i.e. a Mazwellian or Mazwell-Boltzmann dis-
tribution. The de Broglie waves for the particles are
assumed to be periodic inside a large box of side L, the
spacing of the allowed modes in wavenumber space k —
just like the allowed standing waves for radiation in a
box with reflecting walls — is Ak = 27/L so the spac-
ing of modes in momentum space is Ap = hAk = h/L.

1 The plot shows the allowed modes in the plane p, = 0.

The area (and darkness) of the circles is proportional

1to f. The dashed circle indicates the value of the

momentum such that the kinetic energy of a particle

11s equal to kg7. The Maxwell-Boltzmann distribu-

tion function f(p) is that which maximises the en-
tropy S = logW where W = [[, A%!/T], pS!, where

T

A® is the number of modes on the st!' shell. Much

— classically, the answer would be infinite

-5 0

p,/Ap

5

10

as Bose calculated for light quanta — but where non-
degeneracy implies most cells are empty so in the de-
nominator we only consider 7 = 0 or 7 = 1 and we
obtain § = — 37 A°f;log fs where fs = pj/A®.

— but quantum mechanically the allowed de Broglie wave modes 1 ~ cos(k - x) live on a cubical
lattice in k space with spacing Ak = 27/ (see figure 18)

— alot like we found for the allowed states for the radiation field (standing waves)

* this is a very common trick throughout astrophysics (and more generally)

* we assume that the fields in the universe are periodic within some large box of side L

* this is for computational convenience (the value of L drops out of the final results — or should!)

— this gives a lattice of momentum states with spacing Ap = hAk = h/L.

— and so the allowed velocities live on a lattice with spacing Av = Ap/m

® 50 to get ny/ny (where ny is the number density of ions) we need to sum over the allowed discrete
velocity states (de Broglie wave modes) weighted by the Boltzmann probability

=y n(v)/m = ;eXp(—(x +mv?/2)/kpT)

- ny/m

*

*

v

splitting this exponential into two factors and judicuously introducing factors of (Av)? we have

ny/n1 = exp(—x/ksT)/(Av)? x Z(Av)3oxp(—mv2/2kBT)

where the sum can now be replaced by an integral (3°(Av)?... = [d®v...)to obtain

n/n1 = exp(=x/ksT)/(Av)? [ d*v exp (—mv? /2kgT)
— but [d®v exp(—mv2/2k3T> = dr(ksT/m)>/? [ dy y?ev"/2 ~ (kgT/m)3/?

* since the dimensionless integral here is just a number of order unity

e and using Av = h/mL we have ny /ny ~ (Lm/h)3(kgT/m)>/? exp(—x/ksT)

e and finally, since since we chose the volume to be that containing on average 1 electron, we have
L3 = 1/n, and hence we have Saha’s equation for the fractional ionisation

— e /mi ~ (Apne) " exp(—x/kaT)]

— where Aqg = h/p(T) = h/\/mE(T) = h/v/mckgT is the typical de Broglie wavelength of a

thermal electron (KE ~ kpT')
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e Comments and features of Saha’s equation:

a pioneering application of quantum mechanics and statistical mechanics to astrophysics
— the dimensionless pre-factor 1/ )\ane gives a much higher ionization than the naive expectation

% for low-density (highly non-degenerate) plasmas

note that what we have calculated is ratio of ionized (n4) to ground state (n1)
% to get the actual ny/Mpeutral Wwe would need to add the other excited states in npeutral =
ny+mng+...
+ this is fairly straightforward
% and for e.g. the Sun it has little impact as most of the neutral atoms are in the ground state

and we have only considered hydrogen (for simplicity, but it is an important case)

s for higher atomic number, a straightforward generalisation gives the fraction of atoms in the
various ionisation states (singly ionised, doubly ionised ...)

4.3 Implications of Saha’s equation

e The observed absorption in the Sun implies a much greater hydrogen abundance than was previously
thought

— hydrogen is the dominant component of the Universe
e It explains why Balmer absorption lines are most prominent in stars with 7" ~ 10*K (see figure 19)

— for higher T' the neutral fraction drops precipitously

— for lower T the fraction of atoms that are in 1st excited state is negligible
e Another important implication of Saha’s equation is in cosmology:

— In the early universe the temperature was very high and all of the matter was highly ionized and
the radiation was tightly coupled to the matter

— but as the universe cooled, the primordial plasma ‘recombined’ and became a gas of neutral
matter

— at that time the photons of the cosmic microwave background (CMB) ‘de-coupled” and propagated
essentially freely to the present epoch

— the CMB radiation provides a ‘snapshot’ of the universe at the epoch of recombination
— to interpret that we need to know when recombination occurred

— naively one might estimate that to be the time when the thermal energy kg7’ was equal, to order
of magnitude, the ionisation potential £ ~ 13.6eV. Or about 10° K.

— but just as with the Sun a naive Boltzmannian estimate of the ionisation fraction on the surface
of the Sun that would give the wrong answer: in reality the universe remains ionised to a much
lower temperature (about 3000 K).

A Statistical mechanics of non-degenerates gases and plasmas

Here we derive some useful expressions for the phase-space density (i.e. the mean occupation number) and
the entropy for a non-degenerate thermal gas. We introduce the concept of density of states in momentum-
space. We write down the ‘complexion’ @ la Bose for a gas of indistinguishable particles and we express
its logarithm — which is the statistical mechanical entropy — in terms of the mean occupation number
f(p) (really the phase space distribution function). We then show that this is maximised — subject to
the constraints of a given number of particles and total amount of energy — for the ‘Maxwell-Boltzmann’
distribution f o exp(—E(p)/kpT) with mean energy per particles being (3/2)kpT".

A key result here is that the entropy per particle is minus the mean of the log of the occupation number.

We will consider degenerate gases and plasmas in the next lecture.
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Figure 19: Quantities relevant to calculate the strength of
Balmer absorption lines from the hydrogen in the atmo-
sphere of a star as a function of the surface temperature 7.
The curve labelled fheutral is the fraction of the hydrogen

foeuteal (Saha) fexcited

S~

5 that is ‘neutral’ (i.e. non ionized). Only neutral hydrogen
g neutral, but no Balmer glves rise to absorption lines. At sgfﬁmently hlgh' tempera-
“T |atoms in n=2 level absorbtion tures — though lower than the ~ 10° K one would infer from
&, |atomsinn=2level /N \  absorbtion

o

a naive application of Boltzmann’s formula — hydrogen will
be fully ionised and one will see no absorption. The curve
labelled foxcitea indicates what fraction of the non-ionised
atoms are in the first excited state n = 2, which is an in-

creasing function of temperature. The fraction of hydrogen
> that can absorb at Balmer frequencies is the product of
log-temperature T these curves; it has a peak at around 10,000 K - somewhat
hotter than the Sun.

neutral fully ionized
but

excited
T ~ 10°K

A.1 Mean occupation number: single species of particles

A.1.1 Density of states
e We consider a universe within a large cubical volume V = L3 with ‘periodic boundary conditions’
— the volume drops out in final results for things like density of particles, energy, entropy etc.

e so the allowed possible values for the wave-number k of a ‘de Broglie wave’ describing a particle lie on
a lattice in k-space with spacing Ak = 27 /L (see figure 18)
— s0 the possible values of the momentum p = fk lie on a lattice with spacing Ap = h/L
— so we have one momentum state per phase-space volume d*pd3z = h3
— this is just as for EM waves in a cavity

* the fact we are dealing with massive particles rather than massless photons has no impact
* though we may have different numbers of ‘spin-states’ per mode
* but that just introduces a multiplicative factor for non-degenerate particles

‘non-degenerate’ here means that we are considering situations where the number of particles per
mode — or per volume 43 of 6-dimensional phase-space - is very small

A.1.2 The complexion and the entropy

e And, again as for radiation quanta, and following Bose’s notation, we can define a ‘complexion’

- W=[IW* =T[4/ TL, p!)

S

— where the integer s labels the shell and is related to the momentum |p| = sAp
— A* is the number of modes (or ‘cells’) in the s*® shell
x  A® = 4mgs?
* where g is the number of spin-states per momentum state (e.g. g = 2 for electrons)

I

and p? is the number of cells in the st containing r particles

I

so W#, is the number of different sets of occupation numbers {r;}, where j labels the cells, having
a certain distribution of occupation numbers p?

e and define the statistical mechanical entropy to be S = log W and, assuming that A and p$ are large
numbers, we can invoke Stirling’s theorem to obtain

- 5=318s=3(A%log A® — 3" pslogps)

S

19



— note that at any value of the (non-relativistic) energy E(p) = p?/2m = (h?/mL?)s?/2 (or of the
momentum p = hs/L) the numbers s, and hence A and pf, increase as we increase the size of
the box, so in the limit L — oo Stirling’s approximation becomes arbitrarily accurate

e The differences, for particles such as atoms, or ions and electrons in a plasma are as follows:

— if the particles are fermions, the occupation number r can only be 0 or 1
* though as for radiation quanta we may have multiple spin-states per cell

— and for a highly non-degenerate gas (be it composed of fermions or bosons — like He?) the
probability that a cell contain a single particle is Ps(r = 1) = pj/A® is very small, and the
probability to have r > 1 (zero for fermions) is negligible.

e with either of these restrictions, and defining the mean occupation number for the s shell to be
Js = pi/A® (with complement 1 — f; = p§/A®) the entropy is

= = —ZS:AS :ZOI(p?/AS)log(pi/As)

— Oor

— 5= A% - fo)log(1 — i) + felog fi]

— which is interestingly similar to the entropy for radiation (bosonic, rather than fermionic parti-
cles):

- S:ZAS[(1+fs)]0g(1+fs)_fslogfs]

e or, for sufficiently low occupation number (so |log fs| becomes very large)

- |S==) Afilogfs

e note that since the total number of particles is N = 3 A® fs this says that the entropy per particle is
S
- S/N={(-logfs)
— where (...) denotes the particle number weighted average

e or, in more physical terms, since the number of cells in a shell at momentum p = |p| and width
dp = Apds is A%ds = 4dngp*dp/(Ap)® = 4rgL>h=3pdp,

- |g= ~4g7TL3h_3/dpp2f(p) log f(p)

o where f(p=hs/L) = [s

A.1.3 The thermal distribution function

e The thermal distribution function fs is that which maximises the entropy S = — >, A® flog f, subject
to the constraints on the total number of particles:

- N=Y, A,
e and of the total energy
— B = (h2/2mL%) Y, A% fss?
o introducing Lagrange multipliers o and 3, the desired distribution must satisfy
—  8(S —aN — BEw)/0fs = A*[—(1 + log fs) — a — Bh?s?/2mL?] = 0
e with solution

_ ./'s _ 67(1+a+ﬁ}1252/2mL2) _ e—(1+a)e~ﬁp2/2m
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e which, since p?/2m = E, is evidently a Boltzmann distribution

e we can eliminate the normalisation factor e~(+®) by making the substitution 3>, A°... — 4x(L/h) [ dpp?. ..
in N =, A%f,:

— N =4nL3h73 [dpp?fs = 4nL3h—3e~(1+a) J dpp e=Pp*/2m — 4r(L/h)3e—(1+a) (m/6)3/2fdyy2e_y2/2
o or, with [ dyy2e™¥’/2 = \/7/2 and N = nL?3, with n the number density of particles,

- e~ (49) = (BR2/27m)3/2p

— | f(p) = (Bh?/27m)3 2pe=PP*/2m

e The total energy, on the other hand, is
2 3 2\ 3/2 2 _
= B =S A g = an (F) (£5)7 0 [ dpp? e A = nI 1\IB [ dyyte s ?

e or, with nL3 = N and fdyy4e_y2/2 =3/7/2,

— | Biot =3N/28 = 3NkpT/2]

e so the mean energy per particle is (EF) = 3/28 = 3kpT/2.
— se there is kg7T/2 energy per ‘translational degree of freedom’
e The entropy is
- S==Y_Asflog fs — —4r (%)3 (BR2/27m)3/?n [ dpp e=PP*/2m oo f

e but log f = log[(B8h%/27mm)3/?n] — Bp?/2m here. Performing the integral of the second contribution
here gives a constant — independent of temperature ! and particle density n that is — so we have

— |'S = constant — Nlog[(ﬁh2/27rm)3/2n])

e This is in accord with Eioy = 3NkgT'/2 — and the identification 5 = 1/kgT — since that implies that
if we heat a fixed volume of gas we have to apply heat dQ = dFi,; = 3N kpdT /2 and the entropy
is then Sphys = [dQ/T = (3Nkg/2)log T + constant. While the statistical mechanical entropy is
S = —(3N/2)log 8 + constant.

e And it is physically reasonable that the entropy is solely a function of the combination 33/2n. Since
if we compress a volume of gas adiabatically (i.e. without adding heat) this says that the temperature
will increase as 7" oc V ~2/3.

— this is in accord with what one would find by tracking the heating of the particles as they gain
momentum in bouncing off the walls of the shrinking vessel

— 1t is in accord with the idea that the wavelength of the de Broglie waves shrinks with the linear
size of the vessel if shrunk isotropically

— and this scaling is expressed, equivalently, as saying that the pressure P, being equal to nkgT
varies as the -5/3 power of the volume; i.e. the ‘adiabatic index’ is 5/3.

e The constant in the expression for the entropy as calculated above is fFio; = 3N /2

— 50 it is a constant entropy per particle

— the 3/2 is questionable since, at the outset, we have dropped a similar term in obtaining S =
— 2.5 A% fslog fs, which we justified on the grounds that |log f,| is large

— and, on the same grounds, the constant entropy per particle is small compared to the term
involving 8 and n

— so we generally ignore it
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A.2 Saha revisited

One can derive Saha’s equation for hydrogen ionization fraction within this framework as follows:

e we consider a model where we have:

— neutral atoms (label n) in their ground state with occupation number fys
— positive ions (label 4+) with occupation number f,
— electrons (label e) with occupation number fes

e this is slightly over-simplified in that we are not including the various possible excited states of the
neutral atoms

e the entropy is the sum over types of particles

- S:_ZsAs(fnSIngns+f+510gf+s+f6510gfes)

e which we will wish to maximise subject to the following constraints:

— the total number of protons is

* Nn+N+:ZSAS(fns+f+s)
— the total charge is proportional to

* N—i-_Ne:ZsAS(ers_fES)
— and the total energy is
*  BEiot =) s A (fasBn + frsEy + fes(Ee + X))
x where E, = p2/2m, = (h?/2m,L[?)s? and similarly for £, and E, and where x is the
ionisation potential

e the occupation numbers fps, f1s and fes that maximise S subject to their being a fixed net number
of protons, zero charge, and a fixed energy are found by demanding that the variation of S — a, (N, +
Ni) — ag(Ny — Ne) — 8 with respect to, in turn, fns, fys and fes vanish. This gives:

_(1 + 1Og fns) - Qp — ,BEn =0 fns == e_(1+ap+ﬁEn)
—(1+logfrs) —ap—ag—BEL =0 = fy,=e (tortactfBy) (4)
—(1+41og fes) + ag— B(Ee +x) =0 fos = e~ (Lm0atB(Ee+x))

e and summing the occupation numbers and using Ny = > A°fxs — 4r(L/h)3 [ dpp®fxs for each
‘species’ of particles gives

i R 3/2
N, = e—<1+%>4w(L/h)3/dpp%—ﬁp?/zmn — o~ (ltay) <_27T_L> (%)

h 5
3 3/2
Ny = e"(”“ﬁaq)zm(L/h)?’/dprQ*ﬁP2/2m+ — o~ (I+aptag) <L2h7TL> (%) (5)
m=r\ 3 3/2
Ne — 6_(1_a4+[3X)47T(L/h)3/dpp 67/3?2/27”6 = 6_(1_0‘q+BX) <__<2_7TL> <%>
h

e from which we obtain

3
NNe _ (mi\"? (VIRLN" (me)*” g, ’
N"l mn h 5 ‘ ()

e or, ignoring the 1-part-in-2000 difference between m, and m,,, and using n. = N./L? gives, for the
ionisation fraction, Saha’s result

N _1 [ 2mm 3/2 e
fionised = = =T, 1 ( e) e Bx (7)

Ny, Bh?
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e where, as we found before, the pre-factor is, to order of magnitude 1/(n.A3g) so this gives a large

enhancement if the de Broglie wavelength is small compared to the mean electron spacing ne L,

— since the mean squared momentum is (|p|?) = 2m.(E) = 3m./B = 3m.kpT, the ‘effective
volume’ in momentum space is (Ap)® ~ (m¢/B)%? so, with Az = L we can write fionised ~
(N/(Azlp/h)?)~te=PX

— so if the number of particles per volume A? of phase space is small — the definition of non-
degeneracy — the ‘Saha boost factor’ is large.
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