L3 Astro - Section 3 - Stars and Stellar Evolution
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1 Hydrostatic Equilibrium

e Stars are self-gravitating systems.

e Interiors consist of highly ionized plasma and radiation.

— kinetic and, in general, radiation pressure

— mean-free-path < radius of star: pressure locally isotropic

e For stars in hydrostatic equilibrium pressure gradient dP/dr is balanced by gravitational force density.

P/p~GM/R

the equation of hydrostatic equilibrium (EoHE) expresses conservation of momentum

and, to order or magnitude, for a system with mass M and size R, so g ~ GM/R?, says

or, since P is essentially the thermal energy density, that the mean thermal energy per particle

divided by particle mass is on the order of ¢ ~ GM/R, the depth of the Newtonian potential well

pt+dp
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2 The Main Sequence

2.1 The HR diagram

Figure 1: Hydrostatic equilibrium in a ‘plane parallel’ atmosphere. We
consider a cylindrical volume in a stratified atmosphere where there

Ad pis a pressure P(z) and a gravity field g acting parallel to the z axis.

The amount of mass in the cylinder is dM = pAdz so the downward
gravitational force is F' = gdM = gpAdz. In equilibrium, this must
be balanced by an excess upward pressure force on the bottom of the
cylinder, as compared to the pressure acting downward on the top.
This ‘pressure gradient’ force is F = AdP = A(dP/dz)dz. Hence the
condition for hydrostatic equilibrium is dP/dz = —gp.

Figure 2: The hydrostatic formula derived for a plane paral-
lel atmosphere applies to a spherical star also. The caption
on the left evokes the idea that pressure is something which,
‘acting’ on a surface, gives a force (per unit area) normal
to the surface. But the surface is not a real thing - it’s just

' something drawn on the diagram. Is there a way to under-
! stand hydrostatic balance without invoking volumes and

'surfaces? What is happening locally in a self-gravitating

/ ball of pressurised gas? The pressure can be said to be

the flux density of momentum. How does that make sense?
The gravitational force here is really a force density as it is
distributed. What is the force density associated with the
pressure? Is there a flux of momentum associated with the
gravitational field?

Stars come with a very wide range of luminosities; The ‘Pistol Star’ (actually a binary star) is about 10°
times as luminous as the Sun. And they have a wide range of temperatures. But not all combinations
are realised. Most stars lie on or close to a curve in the temperature-luminosity plane known as the ‘main

sequence’

e originally seen in the ‘Herzsprung-Russell diagram’.



in which luminosity was plotted versus ‘spectral type’

it was only later apparent that the latter was essentially measuring the temperature

Sun=1 Super Giants Figure 3: Stars have a wide range of temperatures and a
10,000 v ey very wide range of luminosities. In the very early 1900’s
L o M if.g ' . Herzsprung and Russel classified the spectra of stars into
; {§;§i’ ; L mit ‘spectral types’ denoted by a letter (O, B, A, F, G, K, M).
i ™ Lo Giants This spectral classification was actually a (inverse) mea-
n Srts 000 sure of the temperature of the stars. With distances from
o eﬂ(l;;g i"g' parallaxes they were able to determine the absolute mag-
is sl n‘t“e nitude (or intrinsic luminosity). Plotting log-luminosity vs.
t e » spectral type they found that the stars did not cover the
y wool White I')-;varfs \‘gﬂ - entire 7' — L plane. Rather most stars lie on a well defined
curve; the ‘main sequence’ in which luminosity increases
ek e He®4% with surface temperature. It was also found that in older
Temperature (Kelvin) stellar systems (like globular clusters) the upper part was
depopulated.

So what gives rise to the main sequence? Why would stars — or most stars, at least — be a 1-parameter
family?

Q: does it derive from the EoHE?
this relates the pressure gradient, the density and the gravity

but the gravity is determined by the mass — an integral of the density — so really it is a relation between
pressure and density

pressure, for a gas or plasma, is related to the other thermodynamic variables — the density and
temperature — through the ‘equation of state’ (EoS)

o= P= P(paT)
— for kinetic pressure, this relation is P = nkgT
— for radiation pressure, P = a1*/3

the EoHE and the EoS provides only two constraints on three unknown functions of radius: p(r), P(r)
and T'(r)

— so the system of equations is under-constrained; there is no way we can obtain a solution from
these alone

but if we had some other law or relation providing e.g. the temperature 7'(r) then we could build
solutions

— for example, if we were to assume that the gas/plasma is isothermal with T'(r) = Ty — perhaps
because of thermal conductivity having erased temperature gradients — then one could find a
solution for p(r) and P(r)

— another possible conjecture might be that the entropy of the plasma is independent of radius, so
the pressure would be a constant times p®/® (for gas pressure)

— setting the initial density (or pressure) would then determine p(r), P(r) and T'(r), so these would
form a l-parameter set of solutions

— neither of these hypotheses, however, are realisitic



2.2 The equations of stellar structure

e A proper explanation of the main sequence and stellar evolutionary processes had to await the devel-
opment of quantum mechanics and nuclear physics.

e The necessary ingredients were

— Understanding the source of energy

ES

*

nuclear reactions in the centres of the star where density and temperature are greatest.
described by some complicated function of density and temperature:
E=E(p,T)

- the rate of energy creation per unit volume per unit time
it turns out to be a very strongly increasing function of p and T’
it also depends on the chemical composition
it is related to the energy flux density F by the equation of continuity of energy
d(r2F)/dr = r2€
so if & = 0 then F oc 1/r?, which makes sense, while
if £ # 0 the change A(4nr?F)

- i.e. the rate at which energy is leaving a shell from the upper surface at r + Ar minus
the rate at which energy is entering at r

is equal to 47r2ArE
- which is the rate at which energy is being generated by nuclear reactions within the shell

— Understanding how the energy gets out

*

3k

*

E 3

*

*

involves radiative transfer (including atomic and molecular opacity)

the coefficient of diffusive conductivity r(p,T')

describes primarily conduction by photon diffusion

depends on density, temperature and chemical composition

provides a relation between the heat flux density F and the temperature gradient d7'/dr:
- the equation of thermal conductivity

though convectional conduction also plays a role (see below)

e Together with the EoHE and the EoS his gives a system of 5 equations — the equations of stellar
structure — for 5 unknown functions p(r), P(r), T(r), £(r) and F(r)

— these equations embody two conservation laws

*

*

momentum in the EoHE
energy in the equation of continuity of energy

— along with three ‘constituent relations’

>k

>k

ok

the equation of state, relating P, p and T
the conductivity, relating F and d7'/dr
the rate of nuclear energy generation &

— and there is implicitly the assumption that there be no change in the density of either momentum
or energy, the star being assumed to have relaxed to a static configuration

*

if one were to create a spherical star for which, initially, the pressure gradient did not balance
gp then there would be a net force density which would drive a change in the momentum
density and the system would adjust itself and ‘relax’ to a situation where the EoHE is
obeyed (the disturbance of the fluid eventually dissipating)

and similarly, if one were to create a star where the temperature gradient d7'/dr were such
that d(r®F)/dr = —d(r*xdT/dr)/dr did not balance the local rate of energy generation 72,
then the density of thermal energy would have to be changing and the star would again
adjust itself appropriately



% note that the timescales for these two relaxation processes are different: departures from
hydrostatic equilibrium will get erased on the dynamical time which is equal to the time
it takes for sound waves to cross the star which is very short while the adjustment of the
temperature gradient takes place on the thermal conduction timescale.

* for stars on the main-sequence both of these timescales are short compared to the evolutionary
timescale, so the assumptions of a static system are valid.

e And, assuming we have the ‘cosmic abundance’ (75% hydrogen, 25% helium by weight), these give a
1-parameter family of solutions, where the parameter can be taken to be the mass. '

2.3 Photon diffusion and conduction

e Photon diffusion and heat conduction are described in figures 4 and 5.
e The photons in a star are scattered by electrons so they perform a random walk (see figure 4)

— if the cross section for scattering is o (the Thomson cross-section for electrons) and the scatterers
have space-density n, the mean free path A is such that noA =1

— for a random walk, the net distance travelled scales only as the square root of the number of
paths, so it takes radiation a long time to escape from inside a star

— Q: roughly how long does it take a photon in the Sun to random walk to the surface
e The thermal conductivity is dominated by the transport of energy by photons (see figure 5)

— if we sit at a fixed height in a star we will see photons that were last scattered a distance ~ A
from us

— the ones coming up came from a region with a slightly higher number density than those going
down so there is a slight excess of photons travelling up that is proportional to A times the
temperature gradient

— and the ones coming up have slightly higher energy — the difference also being proportional to
vT

— the upshot is an energy flux density F ~ cn,kgAdT'/dr

— with the coefficient of dT'/dr giving us, to order of magnitude, the thermal conductivity x

scatterers (electrons) density n cross-section o Figure 4: Photon mean free path. Consider photons deep in a
star where the plasma is fully ionised and the scattering of pho-

@ tons is dominated by electrons. The photons perform a random
& ® walk. The mean free path can be calculated as follows: Let P(r)

® be the probability that a photon, starting at » = 0 has survived
a distance r without scattering. This obeys dP = —Pnodr (be-
;—cause the fraction of area of a slab of thickness dr covered by
disks of area o is nodr). So P(r) x exp(—nor). The mean
of this distribution is A = [drrP(r)/ [drP(r) = 1/no. The
root mean squared distance travelled on a path with N legs is
(D*)1/2 ~ /N )\, whereas the time taken is NA/c. So the time
taken to diffuse a distance D is t(D) ~ ¢c~1(D/)X)% x A = D?/cA.

mean free path A: noi =1

2.4 Convective conduction

The model above assumes that energy gets out by radiative conduction.

For some stars — or for some range of radii in some stars — energy is transported via convection. This
was first analysed by Schwarzschild. He realised that a density p(r) and temperature T'(r) profile (with
corresponding pressure profile p(r)) that satisfies the equations of stellar structure may be unstable to
convection.



N1

Figure 5: Photon diffusive conductivity. The number of photons per unit time crossing a horizontal area A
upward is NT ~ cnyA, where n, is the number density of photons. A similar number will be going down, but
not exactly the same. That’s because the ones going up (down) were last scattered a distance Ar ~ \ below
(above) the surface where the density of photons was higher (lower). As n, = oT® for thermal radiation,
there is thus a net flux going up equal to AN = NT - N | ~ cnyAX (AVT/T). There is also a slight difference
in the energy carried by these upward and downward travelling photons. The upshot is a net fluz of energy
across the surface is dE/dt ~ cny AkgAdT/dr so the energy fluz density is F = A~'dE/dt ~ cnykpAdT/dr
so the conductivity is x ~ cn kA = cnykp/neor.

e s |Figure 6: Schwarzschild asked, if we dis-
Pl i ;3?;3';{” /;\' place an element of fluid upwards in a strat-
Bmane J ified medium with some gradient of pres-

sure, will it continue to rise (unstable) or
will it sink back (stable)? We assume here
that the element is sufficiently large, and
the time-scale sufficiently short, that heat
conduction is negligible, so the element con-

1 serves the specific entropy s (entropy per
___|particle or per unit mass). The criterion for

i 5 ’ " stability is that s be increasing with height.

Schwarzschild’s stability criterion is derived by considering what happens if an element of fluid is
displaced radially.

the element will, in general, change its volume to maintain pressure equilibrium with its surroundings.

if it is denser (rarer) than the ambient fluid then the configuration is convectively (un)stable.
o the result is that stability requires the specific entropy s to be an increasing function of height.

Convection is included in stellar structure calculations as follows:

e in a radiative zone — i.e. a region where the equations of structure give ds/dr > 0 and which are
therefore convectively stability — the temperature profile is determined from the conduction equation

e in a convective zone the temperature profile is determined by requiring ds/dr = 0

Schwartzschild’s criterion was derived for an ideal gas. I.e. conduction into or out of the element of fluid on
the relevant time-scale is neglected; the element is assumed to adapt to its changing environment adiabati-
cally..

o The same, or similar, physics applies to instability of stratified lava tubes in volcanoes.

e Entropy gradients are also associated with trapping of pollution in the atmosphere when there are
so-called “inversion layers”.

e Good astronomical sites are those where the telescope is usually above the inversion layer.



2.5 The mass-luminosity scaling law

Figure 7: One can understand crudely the luminosity-mass rela-
tion for stars as follows: We assume kinetic gas gas, so kg1 ~
GMmy/R and therefore T' o< M/R. We assume that the opacity
is electron scattering, with temperature independent cross sec-
tion, so the mean free path is A oc 1/n oc R3/M and the escape
time is then tes. ~ R?/cA o< M/R. The energy E in radiation in
the star is black-body, so E &« T*R® & M*/R and the luminosity
is L ~ Eftese x M 3. the radius R dropping out. Interestingly,
we didn’t need to assume anything about the source of energy
generation. The radius of the star — and hence its central density
and temperature — will adjust itself so that the nuclear energy
generation rate is equal to the L dictated by the total mass.

The equations of stellar structure can be solved numerically and show the main sequence to be well described
by models with ‘cosmic abundance’ fusing hydrogen to helium.

A rough understanding of why the dependence of the luminosity on the mass of main sequence stars can be
obtained from simple order of magnitude argument as follows:

e Consider a self-gravitating ball of plasma of mass M and radius R
e Ignoring the details of the radial structure

— the density is p ~ M/R3

— while the gravitational acceleration is g ~ GM/R?

— hydrostatic equilibrium requires dP/dr = —pg or, approximating the gradient as dP/dr ~ P/R
*x P~px Rx GM/R? ~ ®p
* where ® ~ GM/R is the gravitational potential

— assuming the pressure is mainly kinetic gas pressure, so P = nkT ~ pkT/my, gives a relation
between temperature, mass and radius:

sols BT e GVIm, R
% note that this is essentially the wvirial theorem 2 x KE + PE = 0:

- the left hand side is the mean kinetic energy per particle and the right hand side is, to
order of magnitude, the gravitational binding energy per particle

* and the essential ingredient we shall use here is that temperature scales with mass and radius
as

:

e We assume that energy flux is limited by photons scattering off electrons

— the mean free path A = 1/(neo), where o is Thompson scattering cross-section
— so after N, collisions, a photon will have travelled a net distance [ ~ /N
— s0 to escape (I = R) a photon has to scatter N, ~ (R/)\)? times
— this takes time t = N, x (A/c)
— and the escape time is
% e R

— which, since A o 1/ne, and ne oc M/R3, as we are assuming a fully ionised plasma, scales with
mass and radius as

*

e The energy in the radiation is £ ~ u(T)R? = aT*R3, so, with T oc M/R from the virial theorem (or
hydrostatic equilibrium) this scales with mass and radius as



- |Ex M*/R

e And finally, if this energy escapes in time tesc, the luminosity is L ~ E /tesc x M*/R/(M/R)

So in this model the luminosity is only a function of the mass

=L M

Despite the very crude modelling, this is actually quite a reasonable approximation. More detailed
modelling shows that

— L o< M7 with v ~ 3.5 for low-to-intermediate mass stars

— where, for lower mass stars, we need to include atomic opacity as well as electron scattering

A key result: the luminosity scales as a high power of mass

— so lifetime t ~ eM /L decreases (strongly) with mass

* here € ~ 1% (roughly the fractional excess mass of a neutron compared to a proton) charac-
terizes the efficiency of nuclear reactions

— 80 massive stars live fast and die young

— this explains why, in an old globular cluster, we only see stars with L below what is called the
main sequence turn-off

— it also explains why spiral galaxies, with ongoing star-formation and with bright, hot young stars
still present, tend to be blue, while elliptical galaxies, in which star-formation has ceased, are ‘red
and dead’ as it is only the low-mass cooler stars that are dominating the luminosity

e Perhaps surprisingly, we were able to obtain the L — M relation solely by considering hydrostatic
equilibrium and thermal conductivity from photon diffusion: the law L o< M3 is independent of the
details of the source of energy.

— so we do not obtain, from this argument, an expression for the radius

— to determine R — which in turn, with L would determine the surface temperature 7', since L ~
acT*R? — we would need to model the process of heat generation by nuclear fusion

but that is highly complex, and also sensitive to the inner structure of the star, so cannot be
simply included

however, the strong positive dependence of the heat generation on density and temperature means
that we would expect stars, in this model, to be self-requlating

* imagine that the heat generation were larger than that needed to provide the luminosity
* the star would then heat up and expand to reduce the energy generation rate

* so it will adjust its size (and temperature) to maintain the luminosity required by hydrostasis
and photon conduction

- Aifetime o -!;
3 Stellar evolution

3.1 Sub-solar and main sequence stars
e sub-stellar objects M < My do not get hot enough to ignite hydrogen fusion
— their heat source is gravitational contraction
e main-sequence: these are hot and dense enough to fuse hydrogen to helium

— the Sun burns via the ‘P-P chain’. More massive stars burn via the ‘CNO-cycle’
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Figure 8: Low mass stars like the sun
fuse hydrogen via the ‘proton-proton
chain’. In more massive stars, he-
lium is also generated via the ‘CNO-
cycle’, which is a catalytic process in-
voving carbon, nitrogen and oxygen.
In this process, a ?C carbon nucleus
changes progressively, absorbing pro-
tons, some of which get converted to
neutrons (emitting positrons and neu-
trinos — an extra source of heat) until
eventually it can decay back to 12C by
emitting a helium nucleus.

once sufficient helium ‘ash’ accumulates the stars switch to burning hydrogen in a shell surrounding
the helium core and surrounded, in turn, by a bloated red-giant ‘envelope’.

— the star evolves off the main sequence (to higher L but lower T') (see figure 9)

this continues until central density /temperature high enough to ignite He burning

— for high enough mass stars

— for lower mass stars the He core remains inert
multiple shells form as higher mass nuclei fuse
— short evolutionary time-scale

but fusion is only exothermal up to iron

what happens then? what is the ultimate fate of a star?

15 solar masses

9 solar masses

zero-age
main sequence % 3 solar masses

temmination of core hydrogen buming

40000 20000 10000 5000 2500
T (K)

Figure 9: Main-sequence stars burn hydrogen, building up ‘ash’ of helium in their centres. As the helium
builds up, the stars move slightly off the so-called ‘zero-age main sequence’, but at a certain point the
core collapses and the star evolves dramatically off the main sequence, becoming a ‘red-giant’. The overall
properties of the star are still determined largely by hydrostasis and photon diffusion, so the stars move on
tracks at (very roughly) constant luminosity.

10



4 White dwarfs

4.1

Observed properties

Peculiar properties recognised in the early 20th century. The first example was Sirius-B

4.2

this is in a binary system - with a distance measurable from its parallax so its orbital velocity and
orbit radius gives the mass:

MV <« solar mass
but its low flux density (combined with its distance) = very low luminosity
and its high effective temperature = very compact
so it is extremely dense: p ~ 10° kg/m?

— this implies that light from the surface should be gravitationally redshifted

— a prediction that was observationally confirmed

Q: how does this density compare with that of the sun (hint: solar and lunar tides are roughly similar).

Eddington’s “paradox”

Stars of this density posed a challenge to the then current theory. Eddington: “It would seem that the star
will be in an awkward predicament when its supply of subatomic energy fails.”

Fowler expressed the conundrum as follows:

The electrostatic energy per unit volume of dense plasma with ions (of charge Ze) is embedded in a
quasi-uniform distribution of negative charge

oo ~ 722 d/3
— ie. essentially e2/r divided by a volume 73 ~ 1/n

— or like the electrostatic binding energy of an atom (per atomic volume)
while the thermal energy ((3/2)kT per particle) has a density

—  Uthermal ~ NkT
in normal stars, the thermal energy dominates and the stars are ‘springy’

— if compressed adiabatically, —dP/dr exceeds gp, and the star springs back

— Q: check that this is correct — figure out the change in gravitational binding energy and the
change in the thermal energy - which one ”wins”?

But, for a given T, there is a density n above which uelec + Uthermal < 0

— S0 even ignoring gravity, in this regime it requires energy input to expand a volume of fluid so it
cannot ‘spring back’

— and white dwarfs seem to live in this regime

As Fowler put it: “If part of [the material in a WD] were removed from the star and the pressure
taken off, what could it do?”

11



Fermi—Dirac distribution: f = (exp(p2/2mk8T Zoniea)st

Figure 10: In thermal equilibrium at temperature

T y T T u T
p=30.0 kgT=0.017p;%/m

p= 3.0 kgT=0.152p.%/m
p= 0.0 kgT=0.494p.%/m
p=—1.0 kgT=0.870p;%/m
p=—2.0 kgT=1.617p;%/m

f(p)

p/Pe

4.3 Electron degeneracy pressure

Fowler (1926) resolved the ‘paradox’.

T, the electron momentum distribution is f(p) =

1 1/(eB/k8T=1 4 1) where E = |p|?/2m and p is the

1 ‘chemical potential’. If p is large and negative, the
1 mean occupation number f is very small, so the elec-
1 trons are highly non-degenerate, and the distribution
1 is essentially Maxwellian. But if the electrons lose

4 energy and cool, the chemical potential increases. At

{ low enough temperatures this changes the distribution
1 function in a qualitative manner. As the occupation
{ number cannot exceed unity, one ends up with the
{ electrons filling all the momentum/spin states up to
 the ‘Fermi momentum’ pp = h(3n./87)/3. The plot

shows how f(p) changes if the electrons cool at con-
stant volume.

e Electron de-Broglie waves in a box: density of states (per unit volume) dn = 8mp?dp/h3

— factor 2 from 2 ‘spin-states’ per Fourier mode

e Fermi-Dirac: mean occupation number

o |f(») = (exp(E(p)/ksT — p)+1)7"

— reminiscent of thermal radiation occupation number f = (e#/k87 — 1)~1

* but with a ‘+’ sign rather than ‘-’

% so whereas for photons (bosons) f > 1 in the low-energy ‘Rayleigh-Jeans’ regime f can never

exceed unity for fermions

— 2-parameters: inverse temperature 8 = 1/kgT and ‘chemical potential” i« fixed by the total energy
and number of particles (Lagrange multipliers).

% unlike thermal radiation, we don’t assume that the number of particles is free to adjust itself
— which is why there is no u in the black-body formula

—as T — 0, f(p) becomes a step function
(see figure 10).

+ momentum for which nex\f’lB ~ 1

equal to 1 (0) below (above) the Fermi momentum pg

— parameter p (dimensionless) measures how ‘degenerate’ the electrons are

* but one often sees p/ = ukgT so p/ has units of energy

— limiting cases:
* <0
- highly non-degenerate

- Maxwell-Boltzmann distribution f o« exp(—E/kgT)

- all modes have small occupation number

ki S
- highly degenerate

- all modes below pr fully occupied

- all modes above pp empty
e mode spacing: Ak =27n/L = Ap="hAk

e so if all the modes up to pr are full we have

= h/L

12



—  (8/3)n(pp/Ap) =N = (8/3)mp} = Nh3/L3 = nh3

e so the Fermi momentum is

~ |pr = h(3n/87)'/3

— thus, with E = p%/2m., u ~ np2 /2m, ~ h2n5/3/m

— pressure increases as n%/3, not as n (as would be the case for thermal energy density at fixed T)

* like for adiabatic compression of a monatomic gas

this resolves Eddington’s paradox

* since the electrostatic energy density only goes up like n%/3
* so if the white dwarf is compressed, it springs back

4.4 White dwarf properties

o Hydrostatic equilibrium (or virial theorem) says KE ~ PE:
- pi/2me ~ GMm,/R

o 50 p}/2me ~ GM?/3(M/R3)\3m,, ~ GM?3(nmy) Pm, ~ GMQ/Smﬁ/Bpp/h or

- |pp/mec~ GM2/3m§/3/hc

e So hydrostatic equilibrium = pp oc M?/3, while quantum mechanics = pp o< n!/3 o« M/3/R

— together these give the radius-mass relation for WDs:

:

— bigger mass = smaller WD

But this assumes electrons are non-relativistic — i.e. pp < mec

— pr is increasing with M, so this is valid for small enough M,
— but breaks down at M ~ M, ~ (hc/G)3/2m;2

Q: what happens if we have a star of mass M > M, and let it cool?

— as it contracts, the Fermi momentum rises and reaches the point where pr ~ mec

beyond that point the majority of the electrons are relativistic
— but relativistic electrons — like photons — have an ‘adiabatic index’ v = 4/3

% as compared to v = 5/3 for non-relativistic particles
* so the star is no longer ‘springy’ — at best marginally stable

while the gravitational force increases because ‘pressure gravitates in GR’

upshot: degeneracy pressure cannot stabilise the star

4.5 The Chandrasekhar mass

We assumed non-relativistic electrons v < ¢ above. But, as mentioned, this breaks down at

M, = (he/G)**m?

(1)

which (give or take geometric factors) is the mass of a WD for which the electrons reach relativistic speeds.

o M, is formed from the 3 fundamental constants of nature and the proton mass

e interestingly, it is independent of the mass or charge of the electron
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e it can also be expressed as M, ~ m3, /mg where

— mp; = (he/G)/? ~ 105g is the Planck mass
— the only quantity with units of mass one can form from ¢, G and h

e Detailed relativistic analysis of hydrostatic equilibrium shows that the radius of the WD falls to zero
— as illustrated in figure 11 — at Mg = (3/167)(hc/G)3/?(um,) =2 =~ 1.74My / p?

— where here p is the mean molecular weight per electron
* not the chemical potential - sorry!

— s0 Mg ~ 1.4Mg for p ~ 2

— this is called the Chandrasekhar mass

e it is impossible to have a WD above this mass

4.6 Supernovae

Figure 11: Left panel shows the
white dwarf mass-radius relation.
The power law behaviour is for
masses such that the Fermi momen-
tum is non-relativistic. WDs can-
not exist for M beyond the Chan-
drasekhar mass M,. Type la super-
novae are believed to form in bina-
ries where accretion drives the mass
above M,, at which point they ex-
plode.

2.07]
Radivs decreases

as mass increasas

&

3 Ro M-8
E

o

o

Chandrasekhar
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4.6.1 Type la supernovae

e Type la supernovae are believed to be white dwarfs in a binary system that are accreting matter from
the companion.

When their mass reaches 1.4Mg they become unstable and explode as they become neutron stars

It is this uniformity of their physical nature

— being determined from fundamental constants

— with only weak dependence on their composition

that makes them remarkably uniform in their luminosities

— thus making them excellent standard candles for cosmological studies

this was used to show that the expansion of the Universe is speeding up
— reported in 1998 by two groups
— awarded the Nobel prize in 2011
— interpreted to show that the Universe has become dominated by some mysterious dark energy

4.6.2 Type 2 supernovae

e Type 2 — or core-collapse supernovae are thought to be the result of late-stage evolution of more
massive stars

— they may become neutron stars
— or black holes

e depending on the mass of the progenitor
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A Statistical mechanics of degenerate electrons

A.1 The density of states

We consider electron to be ‘de-Broglie waves’ in a box of volume V = L? just as we did for non-degenerate
particles
This gives the density of states:

e the spacing in momentum of allowed states is Ap = h/L
e so the number of states in a shell of thickness dp is
—  dNstates = 2 X 4mp?dp/(Ap)3
e with the factor 2 from the 2 ‘spin-states’ per mode
e we will follow Bose’s terminology and consider shells in momentum space labelled by an index s such
that p = sAp = hs/L.
A.2 The complexion and the entropy

As Bose did with photons, we let A® denote the number of modes — ‘cells’ in Bose’s terminology — in the s*®
shell and pJ be the number of modes in that shell with occupation number 7.
The complezion W is defined to be the number of sets of occupation numbers {n;} where j = 1...A®

consistent with p? and is given by
w=][4]]» (2)
S T

just as for photons — though here we will only allow 7 = 0 or 1.

e the entropy S is defined to be the logarithm of the complexion:

— invoking Stirling’s formula we have

= Sl W Fiilos A" Spiloon))
— or S :

5 Z; a0 (o d ozt A7)

— where the number of cells in the s shell is A% = dNgiates

— or, since we can only have occupation number » = 0,1 (Fermi exclusion principle), and defining

Pi/A* = fs
= |8==>" 4% - fi)log(1 — fs) + fslog fs]

A.3 The thermal, or ‘Fermi-Dirac’, distribution function
e maximising S subject to the constraints on the number of particles
T Ne= 00 AN
e and of the total energy (non-relativistic electrons)
— BB ATl Dy (2 2m LA)  Maif st
e by means of Lagrange multipliers ¢ and g, the thermal equilibrium distribution must satisfy
— (S +uNe = BEiot)/0fs = A*log[fs/(1 — fs)] + p — Bp*/2m] = 0

e whose solution, with 8 = 1/kpT, is the Fermi-Dirac distribution function for which the mean occupa-
tion number f(p) = fs is

— | f(p) = (exp(p®/2mksT — p) + 1)~

15



e the Lagrange multiplier x is known as the ‘chemical potential’. It is actually more common to define
this as y/ = kg7, with units of energy, so the argument of the exponential is (p?/2m — p/)kgT. But
I prefer not to use this and to keep p dimensionless — which is simpler, to my mind — and befits the
fact that it is the Lagrange multiplier for the number of particles.

e the actual distribution over momentum, defined such that the number of electrons in the momentum
volume d3p is d3N,(p) is given by d®N, = A°fs which, with A% = dNstates, is

—  d3Ne(p) = (8w L3/h3)dpp?/(exp(p?/2mkpT — i) + 1)
e limiting cases:

— for u large and negative this is a Mazwellian distribution
— for p large and positive, f(p) is the Heaviside function which is unity (zero) below (above)
a momentum, known as the Fermi-momentum, that is determined by the density of particles
ne = Ne/L? (see figure 10)
A.4 The Fermi momentum

e with f(p) being zero and 1 above and below pr we must have N = (87/3)p3L3/h3 or

— |pr= (3n6/87r)1/3h

e a particle with p = prp would have a de Broglie wavelength A\ = h/p on the order of the mean
interparticle separation n~1/3

A.5 The relation between pu, prp and T

We have presented above the distribution function, or mean occupation number, for given 1 and temperature
T. Often we know the density of the electrons — and hence the Fermi momentum — and the temperature
and we wish to solve for u.

e integrating d®N, with the substitution p = vmkgTy gives

~  Ne= [d®Ne = (8n/3)(L/h)*(mksT)**1(1)
— where I(p) =3 [ dyy?/(ev*/>~* + 1) is an increasing function of p (see figure 12)
e implying
—  mksT/pp = I(u)~*/°
e so we can consider, if we like, i to be a function of the ratio of the thermal energy to the Fermi energy

e or, equivalently, a function of the ratio of the mean separation ne 173 to the de Broglie wavelength of
a particle with p?/2m = kgT

e so u is a measure of the degree of degeneracy

A.6 The probability distribution for the momentum P(p)

e writing d®N, = N.dP(p), so P(p) is a normalised probability, we have for the distribution of electrons
per interval of (natural) logarithm of momentum:

~  dP(p)/dlogp = 3(p/pr)’f(p)
— which is shown in figure 13 for a range of values of .
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log, 1(1) iy degenerate Figure 12: The dimensionless parameter p appearing in the

Fermi-Dirac distribution function f = (eZ/#T—# 4 1)1 is the
L chemical potential. It arises from the constraint on the number
e T 5 s #of particles and is the Lagrange multiplier for this constraint. In
situations where interactions can efficiently create and destroy
particles ;o = 0. The normalisation of the distribution function
I = 3dey2/(e.vzflw+ 1) gives a relation between the temperature 7', the chemical poten-
tial © and the density of particles n (or equivalently the Fermi
: momentum) mkgT/p% = I(u)~%/3 where the function I(u) is
// Mexwetien -8 plotted on the left. The chemical potential is a measure of the

degree of degeneracy.

2 e

2 =

~5

R P

Fermi—Dirac distribution: f = (exp(p2/2kaT ) ! Figure 13: This plot contains the

_ same information as figure 10 but
| shows how the electrons are dis-
tributed over momentum. Here dP(p)
] is the fraction of particles with mo-
] mentum in some interval dp, so P(p)
1 is the normalised distribution of mo-
{ menta. The ordinate is dP/dlog p, the
fraction of particles per natural log
1 of the momentum, plotted as a func-
{1 tion of p in units of the Fermi mo-
1 mentum. For negative p (rightmost
1 curves) we see Maxwellian distribu-
tions, which vary as dP/dlogp o p°
i for p < VkgT'm and are cut-off ex-
P ] ponentially at larger p. For more
0.1 g R '1 : T 10 positive p-values, the cut-off becomes

sharper as the electrons become more

P/Pe and more degenerate.

pd3oom OO17pF2/m o e

©.0¢

~ Fu= 3.0 k T 0. 152pF2/m
F = OOkT O494pp/m
[ u=—1.0 K G 87OpF2/m
u=—2.0 k T—1 617p¢ 2/m

3(p/pe)’f(p)

0.1

dP(p)/dlog(p)

0.01

A.7 Fermi-Dirac vs. Bose-Einstein distributions
e the Bose distribution for black body radiation is
~ f(p)— (eB@EET . 1)

e the generalisation to a situation where there is a constraint on the number of photons (as in the case
where scattering is able to thermalise the momentum distribution but is unable to generate a fully
thermal distribution) is the Bose-Finstein distribution:

- flp= (eE(p)/kBT—/t o 1)~1
e which is very similar in form to the Fermi-Dirac distribution:
- flp) = (eE(P)/kBT—AL i 1)*1

e whose specialisation to the case where interactions can change the number of particles — and thus drive
the chemical potential to zero — is

—  f(p) = (eEW/ksT 4 1)-1

A.8 Fermi-Dirac and Bose-Einstein from the collisional Boltzmann equation

Quantum field theory gives cross sections for scattering processes and also the ‘stimulated emission’ and
‘Fermi-blocking’ factors 1 4 f (for bosons) and 1 — f (for fermions).
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The rate of scattering of particles out of momentum states p; and ps into states pj and pj) can be

written as an integral over d®py of a differential cross section times a factor

F(p1)f(p2)(1 £ f(P))(1 £ (1)) — £(P1)f(P) (L % f(p1))(1 + f(P1))

‘forward’ reactions: p1p2 = p}p5 ‘inverse’ reactions: p)p} = pip2

with ‘4+’ and ‘-’ signs for bosons and fermions respectively.
In equilibrium this must vanish. This implies

f(p1) f(p2) f(p1) f(p3)

EE e L e e e e

But energy is conserved in these reactions, so

log

E(p1) + E(p2) = E(p1) + E(pY)-
These are compatible if log(f(p)/(1 &+ f(p))) = E(p) + constant or

f(p)

m = exp(BE(p) — p)-

or, solving for f(p),

1) = (EP 2 F 1),
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