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1 The ISM: what is it? where is it found? what is its physical state?

1.1 An inventory of the ISM

Interstellar medium: everything in the galaxy that is outside of stars and planets

• atomic and molecular gas

– emission and absorption – optical/IR and radio (21cm)

• dust

– thermal emission (IR) – from satellites

– scattering – absorption: spectral features – reveals chemical composition

• ionized gas (plasma)

– pulsar dispersion – measures electron density along line of sight

– interstellar scintillation (various types)

• hot plasma (T ∼ 106K)

– ‘free-free’ emission ⇒ X-rays

– cyclotron radiation ⇒ radio emission

• cosmic rays

– discovered with photographic emulsions in balloons

– Cerenkov (Heaviside) arrays

– created by acceleration in shocked magnetised matter

• magnetic fields

– Zeeman splitting of atomic lines (solar corona)

– Faraday rotation – measures line of sight B-field times plasma density

Figure 1: Energy densities of various constituents of
the ISM. Give or take factors of a few, all the compo-
nents of the ISM have broadly similar energy density
∼ 1eV/cm3 as does, it turns out, starlight and the
energy in the cosmic microwave background (CMB).
The fact that there is rough ‘equipartition’ of energy
strongly suggests that the different components are
coupled through some kind of feedback process.

1.2 Maps of the ISM

• 3D maps:

– neutral hydrogen (HI) radio emission – requires rotation curve ⇒ spiral arms (see below)

– dust absorption – from locus of stars with known distances in colour-colour space

∗ gives column density vs. distance
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Figure 2: So called ‘phases’ of
the ISM (courtesy Pierre Lesaf-
fre) are shown on the left on
a temperature-density (T − n)
plot. On the right is shown the
material in stars and their pho-
tospheres. The left-pointing
arrows indicate feedback from
star formation to the ISM from
supernovae, winds and jets.
The right pointing arrows show
how gas (which starts off as
hot interstellar medium (HIM))
can cool and become dense and
ultimately form the stars.

∗ derivative gives the space density

• 2D maps:

– molecular clouds – sub-mm radio – confined to the disk

– Planck satellite: multiple bands sensitive to different components

4
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Figure 3: Maps of the sky from the Planck satellite in 9 pass-bands. These were made to measure the
primordial temperature fluctuations of the cosmic microwave background (CMB). but also provide copious
information on galactic ‘foregrounds’. The higher frequencies show dust emission and the lower frequencies
show radio synchrotron emission. Also present is emission from molecular clouds in the galactic plane.
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Figure 4: By making linear combinations of the intensity at different frequencies (and using polarisation
information) the Planck team were able to construct maps of the various ‘foregrounds’. That is everything
coming from redshift less than 1000, and including several contributions from the ISM in our galaxy.
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2 The ‘two-phase medium’ model

2.1 The ‘phases’ of the ISM

Various probes indicate that gas & plasma is found in 3 ‘phases’: Cold dense clouds with T ∼ 102K; hot
gas at T ∼ 104K; very hot X-ray emitting fully ionized plasma at T ∼ 106K.

Broadly speaking these phases lie on a line in log-temperature - log-density space nT ∼ constant. Why?
And why is the gas found in these different phases?

Figure 5: Phases of the interstellar medium
(from John Mathis’s review). The stable
phases (not the last two) consist of cold, warm
and hot phases with distinctly different tem-
peratures (∼ 100K, 104K and 106.5K respec-
tively). They are in pressure equilibrium with
one another, so they lie on a line of slope −1
on the log n − log T plane (nkBT ' constant)
though there is, for example, a wide range of
densities within molecular clouds, and there
may be other forms of pressure support. They
are subject to various types of heating mech-
anisms and also suffer energy losses (cooling).
The existences of the different phases was first
explained in the 50’s by George Field in what
is called the ‘two-phase’ model for the ISM.

2.2 George Field’s ‘2-phase’ thermal instability model

Consider a roughly homogeneous medium consisting of gas being heated by sources (of radiation and maybe
cosmic rays) and losing energy by collisional excitation followed by emission.

What happens if there is a region which is a bit denser than average?2-phase model

P = nkBT = constant T ≃ 1000K

T = T − δT

n = n + δn

T = T + δT

n = n − δn

heating (per unit volume) ∝ n

collisional cooling ∝ n2

T = T
n = n

⇒ thermal instability

a

m

d

m

m

a a

a

a

a

a

Figure 6: George Field’s 2-phase thermal
instability. Circle at left shows the con-
stituents of the ISM (atoms, molecules
and dust) and the processes: heating by
an external source of photons and ‘col-
lisional cooling’: an atom being excited
in a collision and then radiatively de-
exciting. At temperatures between T ∼
100K and T ∼ 10, 000K this is unstable:
if a region is compressed (expanded) a
little it will radiate more (less) efficiently
and still get cooler (hotter). This is a
runaway process.

• It will radiate more (per unit mass) because ‘cooling’ ∝ n.

– note: collisions per unit volume ∝ n2

• But it will still receive the same energy input per unit mass because ‘heating’ is independent of n

– provided m.f.p. of photons � size of region

• So the temperature will drop.

• But hydrostatic equilibrium implies pressure balance.
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• But pressure P = nkT , so the density n increases still further

This suggests a runaway instability. Any over-dense region will get cooler and even denser and any
under-dense region will get hotter and even less dense.

Q: What stops this?

• The answer relies on the fact that the ‘cooling rate’ is temperature dependent

– this depends on atomic and molecular physics

• At very low temperatures the energy of collisions is insufficient to excite molecules (as we have assumed)

– so these stay in their ground states and the collisions will be elastic

• so the collisional cooling ‘switches off’ if the temperature falls below ∼ 100K

– and the dense gas stabilises in the ‘cold-phase’

– in molecular clouds

• Similar considerations show that the cooling rate from atomic processes increases rapidly around
T ∼ 104K.

– and the gas becomes stable in the ‘warm-phase’

– the warm ISM

This was worked out by George Field and gives us his celebrated two-phase model for the ISM.

• If we had matter at intermediate temperature 100K � T � 104K then the instability would operate.

• Over-dense regions would radiate more effiently and cool down

– but would stabilise at T ∼ 100K

• Under-dense regions would radiate less efficiently and heat up

– but will stabilise at T ∼ 104K

Implications/predictions:

• Hydrostatic equilibrium: → pressure balance

– Matter constrained to lie on a line of constant nT in the density-temperature (n− T ) plane

– since p = nkT

• explains why we don’t see matter at 100K � T � 104K

• instead we see cold dense clouds with T ∼ 100K embedded in a diffuse hotter medium

• matter will tend to be found on regions of the p = constant locus in n− T space where cooling varies
rapidly with T

• similar considerations imply that gas with T � 104K would be unstable

– under-dense regions would be unstable to ‘run-away’ to even higher temperatures

– this is limited by the fact that the potential well of the galaxy can only contain plasma with
T / 106K

– this is called the ‘three-phase model’

Aside: cooling of gas is a crucial element of galaxy formation theory.
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3 Mapping the MW with neutral hydrogen 21cm emission

• Electron and protons have spin→ dipole magnetic moment.

• Hamiltonian (energy) depends on the relative orientation
of the spins.

• Gives hyperfine transitions: ∆E is energy difference be-
tween parallel and anti-parallel configurations.

– ‘spin-flip’ transitions → emission and absorption of
λ =21 cm (radio) photons

– it is a ‘forbidden’ line: transition rate 10−7yr−1

• It is extremely useful for mapping the structure of the Milky
Way and beyond

3.1 21cm mapping of the galaxy

• External galaxies can be broadly split into elliptical and spiral morphologies

– ellipticals are pressure supported

∗ i.e. random motions of stars prevent collapse under gravity

– spirals are flattened and rotationally supported

∗ typically ∼ 100− 300km/s rotation

∗ generally differentially rotating

∗ relatively small random motions

• the Milky Way is highly flattened: is is a spiral galaxy

Figure 7: There are three main
types of galaxies (though these
are further classified morpho-
logically). Of these, the bulk
of the luminosity in the Uni-
verse comes from spirals and
ellipticals. Spiral galaxies are
supported against gravitational
collapse by rotation. Elliptical
galaxies are supported by ‘ki-
netic pressure’ (the motions of
stars). The Milky Way (be-
ing highly flattened) is a spiral
galaxy.

Q: How can we map the structure of the Milky Way using radio telescopes?
A: By mapping the HI intensity as a function of angle and frequency.

• In a differentially rotating disk there is a mapping between vlos and distance

– mapping depends on direction (angle)

– and vlos is directly measurable from the frequency via the Doppler shift

• reconstructing the spatial structure requires (at least) local knowledge of the rotation rate and the
‘rotation curve’

– i.e. how the rotation varies with galacto-centric distance

– this was first established by Jan Oort.
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3.2 Oort’s constants

Stellar kinematics:

• Optical measurements of local stars can provide very precise angular positions and ‘proper motions’

– i.e. how the stars are moving on the sky (relative to a frame defined by distant galaxies or quasars)

• Proper motions show a steady linear trend plus an oscillating component

• the latter being the ‘reflex’ of the motion of the Earth around the sun

– this ‘parallax’ determines the distance d

– one can also get less precise distances from ‘spectroscopic parallaxes’

∗ where the distance is inferred from the flux density using an absolute velocity inferred from
the spectrum of the star and stellar structure theory

• The distance and the steady component of the proper motion determine the 2 components of the
tangential velocity Vt perpendicular to the line of sight

• The redshift of the spectral lines gives the radial component of the velocity Vr

Oort's constants

galactic centre

⊙

l

Vr

Vt

Vr ∝ sin 2l
Vt ∝ cos 2l

Figure 8: Left panel shows the geome-
try for Oort’s calculation. In a rigidly
rotating disk, stars rotate on the sky
at fixed angular velocity Ω0 = V0/R0

with zero radial velocities Vr. Right
panel shows – in a rotating frame –
how, in a differentially rotating disk,
stars initially around us on a dia-
mond (dashed) will be ‘sheared’ into
the rectangle (solid) and have non-
vanishing Vr ∝ sin 2l.

Figure 9: Illustration of how Oort’s
constants A and B can be inferred
from noisy observations of proper mo-
tions of stars. These allow one to de-
termine the local rotation Ω0 = V0/R0

and the differential rotation dΩ/dR.
These allow one to un-map radial ve-
locities to distance around the sky.

Analysis of kinematic data in the MW (technicality):

• the motion of stars is not purely rotational

• there is a random component – gives a ‘noise’

• and the Sun has a non-rotational motion too – gives a ‘systematic error’

– the ‘noise’ is removed by averaging

– the systematic error is removed by determining the ‘local standard of rest’ (LSR)

∗ i.e. how the sun is moving relative to local stars
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∗ velocity observations can be corrected into the ‘LSR frame’

What can we learn about the galactic rotation from (relatively) local kinematics?

• What if the galaxy were rotating like a solid body?

– with fixed angular rotation frequency Ω

• local stars would rotate on the sky (relative to distant objects)

– so they would have relative transverse velocities Vt proportional to d

– and zero line-of-sight velocities Vr

• More general, we expect the galaxy to be differentially rotating with Ω = Ω(R)

• the local rate of change (dΩ/dR)0 is measurable

– either from Vr via the ‘shearing’ of the local flow of stars around us ∝ sin 2l (see figure 8)

– or from an additional proper motion proportional to cos 2l (see figure 9)

• Oort’s constants: A and B

– linear combinations of Ω0 and (dΩ/dR)0

– A = −R0(dΩ/dR)0/2

– B = −R0(dΩ/dR)0/2− Ω0

• Allowed Oort and collaborators to ‘un-map’ from HI emission maps as a function of frequency (the
offset in frequency from the rest-frame frequency being the Doppler shift caused by Vr) to real space
distances

– inverse mapping fails in certain directions

– but clearly shows that the Milky Way has spiral arms

– departures from purely circular motion – e.g. ‘peculiar velocities’ associated with the spiral arms
themselves – can also be seen

∗ Bart Bok called these ‘fingers of god’

∗ God here telling us that we are making an error!

Figure 10: Oort’s maps of the plane of the Milky Way
reconstructed from measurements of the intensity Iν(l)
of the 21cm line (from Oort et al. 1958). The map
shows the spiral structure of the MW. The paper also
showed very clearly that the MW has a flat rotation
curve. This was a surprise since it was expected that
the rotation velocity would be falling as predicted by
Kepler’s law. Its failure to do so tells us that the outer
parts of the galaxy are dominated by a dark matter
halo.
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4 Pulsar dispersion and Faraday rotation

4.1 The plasma frequency

d

E

F = qE = me
··d ⇒ ··d = − q2ne

ϵ0me
dE = qned

ϵ0

ω2p
Figure 11: The Plasma Frequency

• Consider a uniform cold, non-magnetized plasma.

• Displace the electrons in a slab by a distance (perpen-
dicular to the slab) d.

• This creates an electric field like that of a planar ca-
pacitor with charge surface density σ = qned.

– electric field: E = σ/ε0

– gives restoring force proportional to d

– so d̈ = −ωp
2d ⇒ simple harmonic motion

with (squared) frequency ωp
2 = neq

2/ε0me

• 1-D slab is a ‘toy-model’ – but result is general; any
disturbance – of electrons relative to ions – will oscil-
late at frequency ωp.

4.2 EM waves in a cold plasma

Recall EM waves in vacuum:

• for sinusoidally varying fields E,B ∼ cos(kz − ωt):

– Faraday: kE = ωB

– Ampère/Maxwell: kB = ωE ⇐ displacement current

– satisfied if ω2 = k2

• gives wave speed c = ω/k = 1 (in ‘sensible’ units)

– the speed with which wave crests, or nodes, move

Waves in cold plasma: 

•  as before 

• electrons feel acceleration 

•  

• so current is

 

• and  

• where plasma frequency is  

• and dispersion relation is now 

•     just like massive 

E = x̂E0 cos(ωt − kz)
B = ŷB0 cos(ωt − kz)

··x = qE0
m

cos → ·x = qE0
mω

sin

j = nq ·x = nq2E0
mω

x̂ sin = − nq2

mω2
·E

·E + j/ϵ0 = (1 − ω2
p /ω2) ·E

ω2
p = nq2/mϵ0

ω2 = c2k2 + ω2
p ϕ

z

y

x

L

dz

z

y

x

L

dz

·E
B B + dB

·B
E

E + dE

j

• In a plasma, the electric field will accelerate
electrons and drive a current

– the RHS of Ampère/Maxwell is re-
duced:

∗ ∂E/∂t→ ∂E/∂t+ 4πj

– so kB = ωE(1−ω2
p/ω

2) and kE = ωB

– so c = ω/k = (1− ω2
p/ω

2)−1/2

• wave speed depends on frequency

– no affect for ω � ωp

– speed for lower frequencies is changed

– wave speed is ‘super-luminal’ (c ≥ 1)!
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4.3 Dispersive waves

EM waves in a vacuum – or waves on a violin string – are non-dispersive

• wave speed ω/k is independent of frequency

• admit ‘d’Alembertian solutions: f(x, t) = f+(x− ct) + f−(x+ ct)

• wave-forms propagate without changing shape

Wave-number k = 2π/λ. The relation between frequency and wave-number ω = ω(k) is known as the
dispersion relation. If it is ‘non-trivial’ (i.e. not just a constant multiple of k) then waves are said to be
dispersive.

phase and group velocity - a simple example

• trigonometry   

• so for travelling waves   

•  

• carrier  moves with “phase” speed  

• envelope  moves with “group” speed 

→ cos a + cos b = 2 cos ( a − b
2 ) cos ( a + b

2 )
a = (ω + Δω/2)t − (k + Δk /2)x
b = (ω − Δω/2)t − (k − Δk /2)x

cos a + cos b = 2 cos(Δωt − Δkx)cos(ωt − kx)
cos(ωt − kx) ω/k → ω/k

cos(Δωt − Δkx) Δω/Δk → dω/dk

“carrier” wave

“envelope”
modulated by

Figure 12: Group velocity

• Consider, for simplicity, the sum of two
waves with slightly different wave-numbers
k and k′ = k+ ∆k and with corresponding
frequencies ω and ω′ = ω(k′) = ω + ∆ω.

• simple trigonometry shows this is the prod-
uct of two travelling waves

– at half the sum and half the difference
frequencies

• the key feature is that the envelope – the
bunches or ‘groups’ of waves – travels at a
group speed vg = ∆ω/∆k

• and if ∆k � k, ∆ω/∆k ⇒ dω(k)/dk

• argument can be generalised to case of wave packets

– Fourier synthesis of a localised disturbance

∗ if scale of variation of wave envelope is � λ then sum is over waves with similar wavelength

∗ and the ‘packet’ can propagate through many times its length without significantly changing
its form

• the packet moves with speed vg ≡ dω/dk: the group velocity

• while the wave-crests move at speed vp ≡ ω/k: the phase velocity

• over longer time-scales the different frequencies get dispersed

Dispersion relation, phase and group velocities

• For the BRS model the spatial frequency  is that for which the energy in 
the base and connecting springs are equal (For relativistic scalar it is 

) 

• Phase velocity is super-luminal (but carries no information) 

• Group velocity  for  while  for  

• Just like for a particle in SR (where ) if  

k⋆
2π/λCompton

vg = k/k⋆ k ≪ k⋆ vg → c k ≫ k⋆

v = p/ M2 + p2 p ∝ k

Figure 13: Dispersion relation,
phase-velocity and group veloc-
ity for EM waves in a plasma.
Here k? is ωp/c. The phase-
velocity is super-luminal for all
k, but this is no problem as
no information travels at the
phase-speed. Speed of informa-
tion propagation is limited by
the group-speed, which is sub-
luminal for all k.

There are many interesting examples of dispersive waves in physics.
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Phase and group velocity for a massive scalar field

• In 2 dimensions the frequency  lies on a hyperboloid 
above/below the  plane 

• sometimes called the “mass shell” 

• A wave  has positive 
and negative frequency components 

• with opposite temporal and spatial frequencies 

ωkk = (kx, ky)

ϕ(t, x) = 1
2 (ϕkei(ωkt−k⋅x) + c . c.)

ωk

kx

ky

Figure 14: ]
The dispersion relation defines
a hyper-surface in 4-dimensional
frequency space: ~k = (ωk,k).
There are two separate hyper-
surfaces for positive and nega-
tive ωk. A real wave, beam or
packet propagating (and trans-
porting energy) in the direction
k̂ is the sum of positive and
negative frequency components
∝ e±i(k·x−ωkt).

vgroup
vphase

Figure 15: Some stills from an
animation showing the propaga-
tion of a wave-packet made by
summing waves with dispersion
relation ω2 = ωp

2 + c2k2. The
wave crests appear at the back
of the packet and march through
the packet, disappearing at the
leading edge.

• De Broglie/Schrödinger waves

– Eψ = [(p2/2m) + V ]ψ → ψ̇ = (∇2 + a)ψ → ω(k) = a+ k2

– phase velocity vp = ω/k = (a+ k2)/k

∗ can be superluminal: vp →∞ as k → 0

∗ but carries no information

– group velocity vg = dω/dk = 2k

∗ is well behaved as k → 0

∗ velocity of a packet in accord with idea that momentum is proportional to k.

– an important application in astrophysics is in cosmology: a popular model for the DM is that it
is the axion field or an ultra-light axion-like field.

∗ in the potential wells of galaxies an clusters, these fields obey the non-relativistic Schrödinger
equation

• Deep ocean water waves.

– ψ̈ = constant×∇ψ ⇒ ω(k) = a
√
k

– so vp = ω/k = a/
√
k and vg = dω/dk = a/2

√
k = vp/2

– examples:

∗ ripples from a pebble in a pond

∗ or bow-waves from a boat

– longer waves have higher phase velocity

– wave-crests travel through a packet from stern to prow at twice the packet speed

– the mathematics of these waves finds an important application in planetary atmospheres where
they are called ‘gravity waves’

• ‘Whistlers’ in ionospheric physics.

• Slinky?

14



Figure 16: Some stills from an
animation showing the Evo-
lution of a ‘pulse’ in a cold
plasma. The initial pulse
contains components with a
range of spatial frequencies.
As it expands, the higher
frequencies outrun the lower
ones and the pulse becomes
‘dispersed’. An observer at
large distances will receive a
‘pulse’ with lower frequencies
delayed. Radio astronomers
observing pulsars use this to
determine the integrated elec-
tron density along the line of
sight.

Boat wake problem
• This is about phase and group velocities for 

deep ocean dispersive waves. 

• Q1: what is the dispersion relation ? 

• Force is (area ) times density  times  
times vertical displacement 

• Mass is volume  times  

• Assumes water down to depth  
moves. 

• Why? No other scale in the problem 

• EoM is  or  so 
frequency is  

• same as pendulum of length  

• density doesn’t appear 

• so         where  is a constant of 
order unity 

∼ L2 ρ g
h ←

∼ L3 ρ

D ∼ 1/k

m··h ≃ gρAh ··h ∼ (g/L)h
ω ∼ g/L

L

ω = α gk α

L ∼ 1/k
h

h A ∼ L2

m ∼ ρL3

L

Figure 17: The ‘bow-wake
problem’. Here is an inter-
esting little homework prob-
lem. You are sitting idly out
on the ocean in a canoe when a
big tanker comes past, gener-
ating a bow wave a bit like the
one created by the speed-boat
in the picture at left. There
are N waves in the bow wave
train. How many times will
you bob up before the train
passes you?

4.4 Refraction of EM waves in an inhomogeneous plasma

• The dispersion relation is ω2 = ωp
2 + k2

• so the wave-number is only real for frequencies ω in excess of the plasma frequency

• waves with ω < ωp cannot propagate

– if ω < ωp we have imaginary k = i
√
ωp

2 − ω2

– so any (sensible) solution will be evanescent – i.e. falling off exponentially with distance

• In geometric optics we have ‘Snell’s law’ for refraction

– it describes the abrupt change in ray directions at e.g. an air-glass interface in an optical system

– and for a continuously varying refractive index n(x) it says that the rate of change of the ray
direction is the transverse gradient of n(x)

– a result that follows from ‘Fermat’s principle of least time’ which says that the actual path of a
ray is that which minimises the travel time
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• the refractive index in optics is the inverse of the speed of light (in units of c)

• the situation for EM waves in an inhomogeneous plasma is analogous

– beams, or wave-packets, of EM radiation propagating through a plasma with varying electron
density will be deflected (refracted)

– and will not be able to reach regions where they cannot propagate

• Q: What is the ‘refractive index’ (if we want Snell’s law to still work)? It is c divided by some velocity,
but which one – phase- or group-velocity?

• Q: If a plane wave propagating in empty space encounters a cloud of ionised plasma, does it get
focussed or de-focussed?

• Q: Figure 18 shows a beam of radio waves getting reflected off the ionosphere. Sketch the wave-fronts
in the beam as it undergoes reflection.

Reflection of radio waves from the ionosphere

• the electron density increases with altitude entering the 
ionosphere — so the plasma frequency  
also rises 

• This reflects radio waves with  

• scalar field dark matter like the axion or fuzzy DM is 
similarly trapped in galactic and other potential wells

ω = nq2/ϵ0me

ν < 30MHz

Figure 18: An application of the EM dispersion rela-
tion in a plasma is that of reflection of ‘short-wave’
radio waves off the ionosphere. The number den-
sity of electrons increases with altitude as one en-
ters the ionosphere, as does the plasma frequency
ωp ∝

√
ne. It peaks at ν = ωp/2π ' 30MHz. Only

waves above this frequency can propagate through
the atmosphere. This explains why the terrestrial
window for radio-astronomy terminates at 30MHz.
And how we can listen to distant short-wave radio
stations.

4.5 Pulsar dispersion: the ‘dispersion measure’

Figure 19: The first pulsar CP1919 was discovered in 1967 at Cambridge by Jocelyn Bell Burnell and her
supervisor Anthony Hewish. Pulsars are believed to be magetised neutron stars in which electrons are
accelerated and emit radio waves in a relatively narrow beam that sweeps around rather like the beam of
a light-house. An observer in the path of the beam sees regularly space pulses. Pulsars, and particularly
millisecond pulsars, are extremely stable ‘clocks’. Some have been observed for tens of years and have pulse
arrival times ‘residuals’ on the order of 100 ns. That’s as stable as the best terrestrial atomic clocks. They
also provide an extremely powerful probe of the ISM.
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• With the dispersion relation

– ω =
√
c2k2 + ωp

2

• the group velocity is

– vg/c = c−1dω/dk =
√

1− ωp
2/ω2 =

√
1− (neq2/4π2ε0me)λ2

– so longer wavelength radiation travels slower

• this means that a pulse of radiation from a distant source will become a ‘chirp’

– where the highest frequencies arrive first

– followed by a tail of lower frequencies

• Pulsars – as their name suggests – emit pulses

• and these do indeed appear dispersed – lower frequencies arrive later

• measurement of arrival times at different frequencies gives a quantitative ‘measure’ of an integral of
the electron density

– the arrival time is

∗ t(λ) = tem +
∫
dz/vg(z, λ)

∗ where z is distance along the line of sight

– for frequencies much greater than the plasma we can expand

∗ c/vg = (1− (neq
2/4π2ε0me)λ

2)−1/2 ' (1 + (neq
2/8π2ε0me)λ

2)

– so the pulse arrival time delay

∗ relative to that at high frequency

∗ or relative to the arrival time at some arbitrary fiducial frequency, is

∗ δt(λ) = (q2/8π2ε0cme)λ
2
∫
dzne(z)

– so simply differentiating δt(λ) with respect to λ2 gives the dispersion measure:

∗ DM ≡ (q2/8π2ε0cme)
∫
dzne(z)

– pulsars provide a quantitative measure the integrated plasma density in the Milky Way

Figure 20: Left panel shows the pulse
arrival time vs. frequency for a pul-
sar. The output of the radio tele-
scope has been split into 256 different
frequency channels to give the flux
density as a function of frequency
and time. The time (horizontal)
axis is actually the phase; the ar-
rival times have been converted to a
phase by dividing by the period of
the pulses and then wrapped. This
is done solely to increase the signal to
noise. The curve at the bottom is the
‘un-dispersed’ pulse profile. Right
panel shows that, in some cases, the
pulse profile gets broader at lower
frequencies.
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4.6 Faraday rotation: the ‘rotation measure’

A related diagnostic of the ISM (or IGM) comes from Faraday rotation.

• radio sources are usually highly linearly polarized (synchrotron or cyclotron emission, for example).

• If there is a component of the magnetic field parallel to the line of sight, the plane of linear polarisation
rotates because of the Faraday effect.

• it may be difficult to say what the intrinsic polarisation angle is is

• but, like dispersion, the effect is frequency dependent – it is greater at low frequencies

• so measurements at different frequencies – which reveal how the polarization angle changes with
frequency – give the rotation measure

– an integral of electron density times magnetic field

• combining with dispersion measurement gives estimate of B

• but complicated as reversal of the field causes cancellation

Figure 21: Left panel shows how the polarisation angle of radiation from a distant radio source gets rotated
as it passes through the ISM. The amount of rotation gives the line integral of the electron density ne times
the line-of-sight component of the magnetic field B‖ ≡ n̂ ·B. The right hand side is a map of the rotation
measure in galactic (l, b) coordinates.

5 Kolmogorov theory of turbulence

Turbulence is observed in fluids in a wide range of situations and is near ubiquitous in the ISM. As this is
an essentially 3D phenomenon, and the equations of fluid dynamics are non-linear, one might think that
this could only be addressed by numerical simulations.

However, in the early 40s, Andrey Kolmogorov developed a statistical approach to the problem. He was
able to show that, provided there is a large span between the large-scale (the ‘outer-scale’) on which kinetic
energy is being injected and the ‘inner-scale’ at which molecular viscosity is damping the microscopic eddies,
the will be a power-law-like behaviour for things like the two-point correlation function for the velocity field.
The simplest models are somewhat crude, and make various assumptions that may or may not be valid.
Nonetheless, they seem to explain quite well a broad range of phenomena, such as scintillation – which
provides a very powerful probe of the structure of the interstellar plasma.

Below we will first discuss the expected structure of the turbulent ISM in Kolmogorov’s universal scaling
model. We then describe the structure of the wave-front corrugation that this produces in the radiation
from distant point-like sources and finally we describe the different types of scintillation mentioned above.
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5.1 Structure of the turbulent ISM

• There are good reasons to expect that the interstellar plasma is turbulent

– it is subject to pressure and magnetic forces

– its viscosity is negligible for large-scale motions

– so it has a very large Reynold’s number

∗ Euler equation for a viscous fluid:

∗ ρdv/dt = −∇P + σ∇2v

∗ where σ is the coefficient of viscosity

∗ Reynold’s number: R = ρLv/σ indicates relative (un)importance of viscosity

• so we might expect it to behave a lot like what happens if we stir an inviscid fluid

– we start with smooth motion on a large scale

– this is called the ‘outer scale’ : the scale on which we are injecting energy

– so initially the power-spectrum of motions would be concentrated at low-k (spatial frequency)

– but just as sketched by da Vinci and seen in everyday life there is a ‘turbulent cascade’ where big
eddies create smaller eddies and these in turn create smaller eddies and so on until, ultimately
the eddies are of such a small scale that particle diffusion is able to damp out the motions (at
the ‘diffusion scale’ )

– mathematically, this can be understood qualitatively as arising as a result of non-linearity in the
Euler (or Navier-Stokes) equation, where the term representing the acceleration of an element of
fluid is dv/dt = (∂t + v ·∇)v

∗ for sound waves in a gas, for instance, the acceleration is minus the gradient of the pressure
– a force density – divided by the density

∗ if the amplitude of the density fluctuations is small, then we can ignore (v ·∇)v (being second
order in the amplitude of the wave) as compared to ∂tv

∗ and, combining with the continuity equation ρ̇ + ∇ · (ρv) = 0, and with some equation of
state, we get a linear wave equation for δρ(x, t) ≡ ρ(x, t)− ρ

∗ which we can solve by making a Fourier decomposition δρ(x, t) =
∑

k δρke
i(k·x−ωkt)

∗ with the different k-modes evolving independently

– when the amplitude becomes large, however, we cannot ignore the non-linear term

∗ this couples the density and velocity fluctuations at different scales

∗ if we start with large-scale motions (at the outer scale kouter) the non-linearity will excite
fluctuations at smaller scales (higher k).

∗ this is what is happening in a turbulent fluid

• as first analysed by Kolmogorov this produces universal statistical scaling laws structure for the velocity
and density power spectra

Figure 22: Left: Sketch by
Leonardo da Vinci. Right:
Soviet mathematician Andrei
Kolmogorov who first derived
the universal scaling laws for
turbulent fluids. One of these
is that the velocity v of eddies
of size L scales as L1/3.
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5.1.1 Scaling of velocity with eddy size

• Figure 23 illustrates what happens if we ‘inject’ – in a transient manner – kinetic energy at the outer
scale. After about one ‘eddy turnover time’ τ ∼ L/v, we will have smaller eddies. And these will
generate smaller eddies, until, ultimately, the energy will be dissipated at the diffusion scale.

• In a situation such as that sketched by da Vinci (figure 22), where we have continual injection of
energy at the outer scale, and diffusion dissipating the energy at the inner scale – turning it into heat
– we expect to obtain what is called ‘fully-developed turbulence’:

– At each scale L we have eddies with characteristic velocity vL with energy density uL ∼ ρv2
L.

Non-linearity will transfer this energy into eddies of smaller scale (say a factor 2 smaller – or
some similar number of order unity) on a time-scale τL ∼ L/vL. In the steady state, this will be
replenished by energy being transported from the next larger scale.

• the picture here is of a ‘hierarchy’ of eddies – equally spaced in logL

• if a steady state develops it must be that the rate at which eddies are transferring energy to their
offspring must be independent of scale:

– PL ≡ uL/τL ∼ (ρv2
L)/(L/vL) ∝ L0

• which implies

– vL ∝ L1/3

turbulence

L
v

Louter
Figure 23: The idea behind Kolmogorov
scaling is that eddies of size L with ve-
locity vL will generate smaller eddies on
a time-scale τL ∼ L/vL. The kinetic en-
ergy density is uL ∼ ρv2

L. So the eddies
of size ∼ L are transferring energy per
unit volume to smaller scales at a rate
PL ∼ ρv2

L/τL ∝ v3
L/L. So if energy is not

to build up at a particular scale, we need
PL ∝ L0 ⇒ vL ∝ L1/3.

5.1.2 Structure function for ‘passive additives’

• An analogous argument allows us to predict the power spectrum P (k) of fluctuations in density of a
‘passive additive’

– an example of which might be the fluctuations δc(x, t) in the density c(x, t) of cream in a cup of
coffee that has been stirred

– initially, the power will be entirely at low-k

∗ the power being defined to be Pc(k) = 〈|δ̃c(k)|2〉
∗ where δ̃c(k) ≡

∫
d3x δc(x)eik·x is the Fourier transform of δc(x)

∗ and which obeys Parseval’s theorem (2π)−3
∫
d3kPc(k) = V −1

∫
d3x δ2

c (x)

∗ which means that k3Pc(k) measures the variance per log-interval of wave-number k

– but as sub-eddies develop, there will be a cascade of power to higher k

• and again, if we are dealing with fully developed turbulence

– i.e. with continual injection of inhomogeneity in the additive at the outer scale

∗ one might think of dye being injected

– and with continual destruction of inhomogeneity by diffusive mixing at the inner scale
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• the variance is being transported down the hierarchy of eddies and the variance at scale L ∼ k−1

– 〈δ2
c 〉L ∼ (k3Pc(k))k∼L−1

• divided by the eddy turnover time τL ∼ L/vL ∝ L2/3 must be independent of L

– (k3Pc(k))k∼L−1 ∝ L2/3

• in studies of turbulence, as well as the power spectrum Pc(k), it proves to be useful to describe the
statistical properties of the fluid in terms of the ‘structure function’:

– Sc(L) ≡ 〈(δc(x)− δc(x + L))2〉x
– where 〈. . .〉x denotes the spatial average

• which, for isotropic turbulence, is only a function of L = |L|

– the structure function is closely related to the autocorrelation-function:

∗ ξc(x) ≡ 〈δc(x′)δc(x′ + x)〉x
– since Sc(x) = 2(ξc(0)− ξc(x))

– and the Wiener-Khinchin theorem says that Pc(k) is the Fourier transform of ξc(x)

– so Pc(k), ξx(x) and Sc(x) all provide equivalent information about δc(x)

– we say they all describe the second moment of the fluctuations

• in terms of Sc(L), the Kolmogorov scaling law for a passive additive is

– Sc(L) ∝ L2/3

5.1.3 Specific entropy and density as passive additives

• A particularly important passive additive is the specific entropy s(x) (the entropy per particle) of a
gas or plasma

– assuming that we are dealing with eddies sufficiently large that heat conduction is negligible the
structure function Ss(L) should obey Kolmogorov’s scaling law Ss(L) ∝ L2/3

• and, if we are dealing with sub-sonic turbulence, so the gas can be considered to be effectively isobaric,
then the fluctuations in the density n of gas particles (or ne for electrons in a plasma) will also obey
Sn(L) ∝ L2/3

– the specific entropy is s = kB log
(
T 3/2/n

)
∗ since if we heat an element of gas at constant n we have dS = V dQ/T = V d((3/2)nkBT )/T =

(3/2)nV kBd log T so ds = dS/nV = (3/2)kBd log T so at contant n (or constant V )

∗ while if we change the volume adiabatically (dQ = 0) the pressure is P = nkBT ∝ V −5/3 ∝
n5/3 implying T ∝ n2/3 at constant s, so s must be a function only of the combination T 3/2/n

∗ another way to see this is to use the statistical mechanical entropy S = −
∫
d3x

∫
d3pf(p) log f(p)

and N =
∫
d3x

∫
d3pf(p) so s = S/N = −〈log f〉. But the phase-space density f is on the

order of f ∼ n/〈v2〉3/2

· i.e. the number per spatial volume per volume in velocity space

∗ and 〈v2〉 ∝ T , so again we get s = log f−1 = log
(
T 3/2/n

)
+ constant

∗ aside: it is common in e.g. atmospheric physics to refer to the specific entropy of a body of
gas in terms of the potential temperature: this being the temperature the gas would have if
it were brought, adiabatically, to some standard reference density

– so ds/kB = (3/2)dT/T − dn/n
– while, at constant pressure, dP = d(nkBT ) = nkBT (dn/n+ dT/T ) = 0⇒ dT/T = −dn/n
– hence ds/kB = −(5/2)dn/n implying
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∗ dn = −(2n/5kB)ds

– so the fluctuations in density are linearly proportional to the fluctuation in the specific entropy

– and the same will be true of the fluctuations in the refractive index (which is what concerns us
here)

– so both are expected to have Kolmogorovian 3D structure functions

5.2 Structure of wave-front corrugation caused by the inhomogeneous ISM

• We have described the Kolmogorov scaling for 3D structure function of e.g. the refractive index n:

– Sn(L) ∝ L2/3

• what we are more interested in is the two-dimensional structure function for the height h(x) of corru-
gations of the wave-fronts of light from distant sources that have passed through a ‘slab’ of turbulent
plasma with such a structure function

• As described in the caption to figure 24 these corrugations have a 2D structure function

– Sh(L) ∝ L5/3

– another, more formal, way to arrive at this result is to use Limber’s equation

– and another way to convince yourself that this is right is to think of a ‘white-noise’ (or ‘shot-
noise’ process – i.e. the kind of fluctuations in density you get by randomly distributing particles
in cells)

∗ for such a process the RMS density fluctuation δ3D(L) in a 3D cell scales as 1/
√
N , where

N is the mean count per cell, or as L−3/2

∗ while the projected RMS density fluctuation scales δ2D(L) scales inversely with the area of
the projected column of 3D cells, or as δ2D(L) ∝ 1/L

∗ the structure functions (in 2- and 3-D) being the variances we have S2D(L) ∝ 1/L2 and
S3D(L) ∝ 1/L3 so we have, for the scaling with cell-size, S2D(L) ∝ LS3D(L)

∗ but if we didn’t have white-noise scaling in 3D (as is the case for passive additives with
Kolmogorov statistics), this will just ‘tilt’ both structure functions

∗ another consequence of this line of argument is that if we have a 3D power-law power spectrum
P3D(k) ∝ kn

· where n is often called the ‘spectral index’

· and for the specific case of white-noise n = 0

∗ then the power spectrum P2D(k) of the projected density will have the same index as the 3D
power spectrum

· which for the case of passive additives with Kolmogorov scaling is n = −11/3

· since S3D(L) ∼ (k3P3D(k))k∼1/L ∝ L2/3 ∼ k−2/3

· or equally, since S2D(L) ∼ (k2P2D(k))k∼1/L ∝ L5/3 ∼ k−5/3

• another feature of these wavefront corrugations is that, being the sum of statistically independent
random spatial fluctuations, we would expect, by virtue of the central limit theorem that they will
obey Gaussian statistics

– one consequence of which is that one can generate realisations by adding waves (Fourier synthesis)
with randomly chosen phases

– another consequence is that for a statistically homogeneous random field the power-spectrum (or
auto-correlation function or structure function) gives a complete description of the field
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Figure 24: Kolmogorov scaling for the corrugation of
wavefronts. The wavefront displacement is h(x) =
−
∫
dzδn(x, z). Consider a simple model of a slab of

thickness T filled with randomly placed ‘blobs’ of size
L with randomly chosen positive or negative fluctua-
tions in the refractive index δn = ±δ. Each of these
will give a contribution to h(x) equal to h1 = ±Lδ.
There will be, on average N = T/L of these along any
line of sight through the slab. So the mean-squared
corrugation will be 〈h2〉 = N〈h2

1〉 = N(Lδ)2 =
TL〈δ2〉. If we consider the superposition of a hier-
archy of blobs of different sizes, and let the blobs of
size L have refractive index obeying the Kolmogorov
scaling law, so 〈δ2

L〉 ∝ L2/3, then the structure func-
tion of h(x) on scale L – being driven by those blobs
of size L – will scale as Sh(L) ∝ L〈δ2

L〉 ∝ L5/3. So
the RMS difference in h at two points separated by
distance L is δh(L) =

√
Sh(L) ∝ L5/6. That means

that the ‘tilt’ of the wavefront δh(L)/L is almost scale
invariant.

6 Scintillation

Pulsar dispersion measures the mean electron density along a line of sight. A somewhat different probe of
the ISM – one which measures the inhomogeneity or ‘clumpiness’ of the plasma – comes from scintillation of
radio sources. This is variation of the flux density – quite analogous to the ‘twinkling’ of stars seen through
Earth’s atmosphere – caused by inhomogeneity of the plasma through which the radiation propagates.
Interestingly, the first pulsar CP1919 was discovered in a survey carried out to look for scintillation of
sources. The picture we have in mind is a distant point, or point-like, source and some ‘scattering screen’ of
inhomogeneous ISM material that imposes corrugations on the wave-fronts from the source and which give
rise to spatial fluctuations in the flux density down-stream of the scattering screen. The observable time
variation of the flux-density arises because of our motion (or, more generally, the relative motions of the
source, screen and observer).

As we will describe, the strength and character of the scintillation depends essentially on the relative
size of two length scales:

• one is called the ‘diffraction-scale’ rdiff which is the scale over which the inhomogeneous ISM produces
phase errors on the order of one radian.

– in atmospheric ‘seeing’ this is called the ‘Fried length’ , after David Fried.

• the other is the ‘Fresnel scale’ rF ∼
√
λD, determined by the wavelength and the distance to the

source

– this is the size of a region on the scattering plane for which radiation from the source interferes
constructively

The regimes rdiff � rF and rdiff � rF are known as the ‘weak scattering’ and ‘strong scattering’ regimes
respectively.

• in the weak scattering regime, the amplitude of the flux density fluctuations is a diffraction phenomenon
and the flux-density fluctuations are small

• in the strong scattering regime the flux-density fluctuations are strong and are caused by multi-path
propagation with interference between the different paths

• there can also be longer time-scale ‘refractive’ flux density fluctuations which, as the name suggests,
can be understood in terms of geometric- or ray-optics which may be strong if caustics are formed.
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Observed scintillation is broadly in line with the idea that the ISM is turbulent , with the characteristic
power-law spectrum of density fluctuations as worked out, for the case of ‘fully-developed isotropic turbu-
lence’ by Kolmogorov. Though one of the main goals in scintillation studies is to test for departures from
the idealised model (as caused by anisotropy associated with magnetic fields, for instance).

In addition to providing information about the ISM, scintillation provides useful information about the
relative velocities of the source, observer and scattering inhomogeneities as well as about the physical size
of the emitting region.

6.1 The Fresnel-Kirchhoff integral

An excellent and accessible reference for the following material is Ramesh Narayan’s 1992 paper in Phil.
Trans. R. Soc. Lond. A.

According to Fresnel theory, the flux density at position x on the observer plane is given by F (x) =
|ψ(x)|2 where the complex field amplitude ψ(x) is given by the ‘Fresnel-Kirchhoff integral’ :

ψ(x;D) =
i

2πr2
F

∫
d2q exp

(
iφ(q) + i|q− x|2/2r2

F

)
(1)

where φ(q) = 2πh(q)/λ is the phase-error (h(q) being the corrugation of the wavefront) and where rF ≡√
λD/2π, D being the distance from the observer plane to the scattering screen (see figure 25).

2π δ(path length)/λcomplex field amplitude

Figure 25: The Fresnel-Kirchhoff integral: The
electric (or magnetic) field from a distant source
at some position x on the plane z = 0 is the
real part of a complex amplitude (here denoted
by g(x)) times eiωt. The amplitude g(x′) on an-
other plane – say the observer plane – is the sum
of the amplitudes of all the elements of area on
the first plane times a ‘geometric phase factor’
eiπ|x

′−x|2/λz.

Equivalently, the complex field amplitude at the observer plane ψ(q;D) is the convolution ψ(q; 0) ⊗
f(q;D) of the complex amplitude immediately down-stream of the scattering screen: ψ(q; 0) = eiφ(q) with
the Fresnel function f(q;D) = exp

(
−|q|2/2r2

F

)
.

A realisation of a phase-screen φ(q) as generated by Kolmogorov turbulence is shown as the lower surface
in figure 26 and the upper surface shows the real part of the Fresnel function. To calculate the field amplitude
for an observer at x = 0, we multiply the complex exponential of the phase screen by the Fresnel function
and integrate. And to get the normalised flux density we square the absolute modulus. To get the result at
some different observer position we simply translate the Fresnel function and repeat.

6.2 Scintillation in the weak scattering regime

• The phase structure function for Kolmogorov turbulence is

– 〈(φ(x)− φ(x + r))2〉 = Sφ(r) = (r/rdiff)5/3

– so rdiff is the ‘phase coherence length’: the rms phase fluctuation between two points with sepa-
ration rdiff is 1 radian

• The ‘weak scattering regime’ is rdiff � rF

• this implies that the fluctuations in phase over the Fresnel scale are small and we have

– ψ(q; z = 0) = exp(iφ(q)) ' 1 + iφ(q) + . . .

– or ψ(q; z = 0) = 1 + δψ(q; z = 0) with initial amplitude perturbation at linear order

– δψ(q; z = 0) = iφ(q)

• So the perturbation to the field amplitude on a plane at distance z down-stream is
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Figure 26: A realisation of a Kol-
mogorov ‘phase screen’ φ(q) (bot-
tom) and (real part of) Fresnel func-
tion f(q) top. The EM field immedi-
ately after passing through the scat-
tering layer is that of an unperturbed
plane wave eiωt times the complex
amplitude ψ(q; z = 0) = eiφ(q). At
a distance z = D down-stream, the
complex amplitude ψ(q; z = D) is
given by the convolution of ψ(q; z =
0) with the Fresnel function, which
aside from a normalisation factor, is
f(q) = ei|q|

2/2r2F . The convex bowl
in the centre of the f(q) is known as
the first Fresnel zone.weak and strong scattering

log r

Sϕ(r) = ⟨(ϕ(x) − ϕ(x + r))2⟩ = (r/rdiff)5/3

log Sϕ

Sϕ = 1 ⇒

rF

rdiff ≪ rF rdiff ≫ rF

strong 

scattering

weak 

scattering

Fresnel

scale

<(Δφ)2>=1

Sϕ ∝ r5/3

Figure 27: The character of the scintillation of a source
depends on the relation between two scales: the Fresnel
scale rF ∼

√
λD, whose significance is that the geomet-

ric path length difference for paths separated by less than
rF is less than a wavelength, so such paths interfere con-
structively, and the diffraction scale rdiff , which is the scale
at which phase fluctuations are of order 1 radian. In the
strong (weak) scattering regimes, the phase fluctuations at
the Fresnel scale and on most scales of interest are large
(small). In the weak regime the scintillation is strongest at
the Fresnel scale, but is weak. In the strong regime, large
flux density modulation is found at the diffraction scale.

– δψ(x; z) = −
∫ d2q

2πr2F
φ(q)ei|q−x|

2/2r2F = −
∫ d2q

2πr2F
φ(q + x)ei|q|

2/2r2F

– where here rF =
√
λz/2π

• Consider a sinusoidal phase fluctuation: φ(q) = φ0 cos(k · q) = 1
2(φ0e

ik·q + c.c.)

• for which the observer plane ampliitude is

– δψ(x; z) = −1
2φ0e

ik·x ∫ d2q
2πr2F

eik·q ei|q|
2/2r2F + c.c.

• where the integral is the 2D Fourier transform of the Fresnel function

– but as is easily shown (by completing the square), the Fourier transform of a normalised Gaussian
g(q) = (2πσ2)−1e−|q|

2/2σ2
is another Gaussian:

∗ g̃(k) =
∫ d2q

2πσ2 e
k·q e−|q|

2/2σ2
= e−σ

2|k|2/2

– so, replacing σ2 → ir2
F = iλz/2π, the desired integral is

∗
∫ d2q

2πr2F
eik·q ei|q|

2/2r2F = −ieir2F|k|2/2 = −ieiλz|k|2/4π

• so the perturbation to the complex amplitude is

– δψ(x; z) = ieiλz|k|
2/4π 1

2(φ0e
ik·x + c.c.) = iφ(x)eiλz|k|

2/4π

– or

– δψ(x; z) = eiλz|k|
2/4πδψ(x; z = 0)
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• so the perturbation to the field amplitude, which starts off being purely imaginary, simply gets rotated
on the Argand plane

– so after a distance z = 2π2/λ|k|2 the perturbation is δψ = −φ0 cos(k · x) and is purely real

– and, since the flux density is F ∝ |ψ|2 = |1 + δψ|2 ' 1 + 2δψ, we will see cosinusoidal flux density
modulation on this plane F (x) ∝ (1−m cos(k · x)) with so called ‘modulation index’ m = 2φ0

– and after a further distance ∆z = 2π2/λ|k|2 the perturbation is purely imaginary and has returned
to being a pure phase error (but with opposite sign from the original)

– aside: this phenomenon has important implications in adaptive optics

∗ in an AO system the goal is to analyse some of the light coming into the detector to figure
out the wave-front corrugations and then correct for this with a ‘rubber’ mirror

∗ but this does not work if the phase errors imprinted by the atmosphere have ‘rotated’ into
amplitude errors

· which also cause image degradation

∗ so what has to be done is to introduce some optics that creates, at some point in the beam,
a ‘conjugate’ of the layer that was producing the seeing degradation (and thereby turn any
amplitude errors back into correctable phase errors)

∗ since the atmospheric seeing does not, in general, arise from a single layer, this leads to what
are called ‘multi-conjugate’ AO systems

• the general initial perturbation to the wave amplitude δψ(x) can be expressed as a Fourier sum over
waves with different spatial frequencies k

– for Kolmogorov turbulence the phase error φ(x) has power spectrum with 〈φ2〉k ∼ k2Pφ(k) '
(krdiff)−5/3, which becomes large at small k

– but the real part of the amplitude perturbation is equal to the phase error times sin
(
λzk2/4π

)
=

sin
(
k2r2

F/2
)

– so the power spectrum of the flux density fluctuations is

∗ 〈(δF )2〉k ∼ k2PF (k) ' (krdiff)−5/3 sin2(k2r2
F/2)

– it follows that k2PF (k) ∝ k7/3 for krF � 1 and k2PF (k) ∝ k−5/3 for krF � 1 and that the
maximum modulation index will be at k ∼ 1/rF with m ' (rF/rdiff)6/5 which, since we are in the
weak scattering regime (rdiff � rF) is small compared to unity (see figure 33 for a demonstration
of this)

– and the temporal power spectrum of the light curve of a source should show the same behaviour
with ω = kv where v is the speed the observer is moving relative to the pattern of flux-density
variations (which itself will, in general, be moving owing to the motion of the source and the
scattering screen).

• another observable characteristic is that the modulation index will depend on wavelength

– for a given 3D perturbation to the electron density ne the perturbation to the refractive index
δn scales as λ2, as does the height δh of the wavefront corrugation,

– so the phase error δφ = 2πδh/λ scales linearly with wavelength

– so we should see a modulation index that has oscillations modulating an overall increasing trend
of the index with λ

6.3 Scintillation in the strong scattering regime

• Increasing the strength of the refractive index fluctuations; the thickness of the scattering screen; the
distance to the observer; and the observing wavelength all increase the scintillation strength.

• If rdiff . rF we are said to be in the strong scattering regime, and the character of the scintillation
changes in a qualitative manner.
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Figure 28: Some useful typi-
cal numbers for applications of
scintillation in astronomy from
Narayan (1992). Here λ is
the observing wavelength; D
the distance to the scattering
screen; rF is the Fresnel scale;
and rdiff is the scale over which
the phase fluctuations are of or-
der 1 radian.

• one feature of the strong scattering regime is ‘diffractive inter-stellar scintillation’ (DISS)

– this can be understood as arising from interference between the radiation reaching the observer
along different paths (‘multi-path propagation’ )

∗ with the different paths have separation at the scattering screen, which called the ‘refactive
scale’ , rref = r2

F/rdiff

– this causes the flux density fluctuations on the observer plane – through which we are moving –
to be ‘speckly’

∗ this gives flux density fluctuations that are always strong (for point sources at least) with
modulation index unity.

∗ and satisfy Rayleigh statistics (the flux density F has an exponential distribution P (F )dF =
exp
(
−F/F

)
dF/F )

– the speckles on the observer plane have a length scale ∼ rdiff and therefore give rise to rapid
fluctuations in flux-density

– and they have a strong dependence on wavelength (different wavelengths having different speckle
patterns)

– multi-path propagation also results in observable ‘pulse-broadening’ in pulsars (see figure 20)

• the other feature is ‘refractive inter-stellar scintillation’ (RISS)

– this is causes by the focusing of light by refractive index fluctuations on the scale rref and larger

– this is largely understandable in terms of geometric optics

– the fluctuations at scale rref – with flux density varying on the correspondingly long time-scale –
are weaker than DISS

– but these affect extended as well as point sources (though the effect is reduced if the source size
is θ & rref/D)

• another feature that may possibly arise is the formation of ‘caustics’ by focussing

– for this to happen would require a large ‘inner scale’ in order to suppress small scale corrugations
in the wavefront

– the formation of caustics from smooth wave-front deformations is illustrated in figure (32), which
also discussed the transition between the wave- and geometric- or ray-optics descriptions

– the scintillation caused by caustics – if indeed it happens – would be of large amplitude; appear
at much longer time-scales than the speckle driven DISS; and would have a different dependence
on observing wavelength
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rdiff
rref

Figure 29: Illustration of DISS. The field amplitude ψ for some observer is the integral of
exp
(
i(φ(q) + q2/2r2

F )
)
, the complex exponential of the function plotted at left. Right shows the phase.

On the edges of the ‘mountain’ the phase changes locally linearly and rapidly, so there is almost perfect
cancellation. The main contribution to the ψ comes from regions of q-space where the phase is close to
stationary. In the strong scattering regime, the gradients of the Kolmogorov phase screen are sufficient to
overwhelm the geometric phase-gradient out to a distance rref ∼ r2

F/rdiff . The amplitude is the superposi-
tion of the contributions from patches which are individually of area ∼ r2

diff , and within which there is little
variation of phase. These are the multiple propagation paths and they lie within an area ∼ r2

ref . These have
different phases (different heights in the left plot) and, if one moves the observer, the phases change, which
gives rise to the ‘speckly’ interference pattern on the observer plane (see figure 33).

6.4 Problems on turbulence, imaging and scintillation

6.4.1 Pulse dispersion

• assume below that one is observing radiation at frequencies well above the plasma frequency

• show that the arrival time delay of radiation that was emitted as a short transient pulse scales as
wavelength squared and determine the constant of proportionality

• show that the amplitude of the waves – i.e. the envelope function – scales as ω3/2

– hint: First, figure out what is the initial spectrum P (k) = |f̃k|2 as a function of spatial frequency
k.

– then determine, for some time t, the range of distance ∆x corresponding to some range of
wavenumber ∆k

– Then use Parseval’s theorem to relate
x+∆x∫
x

dxf2(x) to the initial power in the corresponding

range of spatial frequency.

• use the above to show that the amplitude falls with time delay as (∆t)−3/4

6.4.2 Pulse broadening

• show that the pulse broadening from “multi-path propagation” should obey ∆t ∝ λ22/5

• how does this theoretical prediction compare with the data shown in figure 20?

• using values the from Narayan’s table reproduced above estimate the pulse-broadening (or ‘scattering’)
time-scale. How does this compare with the data shown here (for the galactic centre magnetar SGR
1745-2900 whose period is about 3s)? How might this discrepancy be accounted for?
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Figure 30: Simple model for why the speckle size in DISS is on the order of rdiff . The field amplitude ψ is
the sum of contributions from N patches of area Ai spread over the multi-path region of size ∼ r2

ref , with
phases φi having a perturbation from the refractive index fluctuations and also a geometric contribution
depending on their location. The flux density F = ψψ? is therefore a double sum with N diagonal elements
(red) that have δFii = A2

i which is always positive and N(N − 1) off-diagonal elements (blue) that give
contributions δFij = AiAje

i(φi−φj) that may be positive or negative (with δFij +δFji = 2AiAj cos(φi − φj)).
The ‘root-N’ RMS of the off-diagonal contributions is equal to the mean of the diagonal contributions but
is equally likely to be positive or negative. If the observer moves a distance ∆x this will change the phase
differences of a pair by δφij ∼ (∆x/D) × rref/λ. But rref ∼ r2

F/rdiff , and r2
F ∼ Fλ, so if ∆x ∼ rdiff the

phase shift δφij is roughly unity. Moving the observer by a distance rdiff is therefore sufficient to give a new
realisation of the randomly fluctuating part of F ; i.e. cause a significant change in F , hence the speckle size
must be ∼ rdiff .

6.4.3 Timescale for scintillation caused by the ISM

• using values from Narayan’s table reproduced above, and assuming relative motions of order v ∼
100km/s, estimate the time-scale for strong scintillation of a typical pulsar

• how small would a source need to be to show strong scintillation in such circumstances?

6.4.4 2-point function of the EM field

This is a rather technical problem – but a good exercise nonetheless, particularly the latter parts which
serve as a good preparation for the later cosmology section where Gaussian random fields play a pivotal
role.

• Use the Fresnel-Kirchhoff equation (1) to show that the two point function of the complex field am-
plitude ξψ(d) ≡ 〈ψ(x)ψ?(x + d)〉x is independent of the observer-scattering screen distance D.

– This may well seem surprising, given that the very character of the scintillation pattern depends
critically on the distance (the flux density fluctuations being zero immediately down-stream of
the screen, and the transition from weak- to strong-scattering being at a the distance where rdiff ,
which depends only on the structure of the screen, and rF ∼

√
Dλ, which increases with D, are

the same.

– the reason that ξψ(d) is inadequate to describe statistical properties of scintillation is that that
would require e.g. the 2-point function of the flux-density F which, being the square of the field
amplitude, involves the 4-point function of the phase.
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– the invariance of ξψ(d) is important and useful as it is something that radio astronomers directly
observe – it is the ‘visibility’ – and it relates directly to properties of point-spread function

• Show that if the phase error φ(r) is a statistically homogeneous Gaussian random field (as the central
limit theorem encourages us to believe – see appendix) ξψ(r) = exp(−(ξφ(0)− ξφ(r))), where ξφ(r) =
〈φ(x)φ(x + r)〉x.

• Hints:

– For a Gaussian random field the probability distribution for the values of the field at two points

r1 and r2 is p(φ1, φ2)dφ1dφ2 = (2π|M |)−1dφ1dφ2 exp
(
−φiM−1

ij φj/2
)

where Mij = 〈φiφj〉 is the

‘covariance matrix’ and M−1
ij and |M | are its inverse and determinant.

– the above generalises to the n-point function p(φ1, φ2, . . . , φn), but we will only need the 2-point
function here

– for a statistically homogeneous and isotropic random field the ‘ensemble average’ 〈φ(r1)φ(r2)〉
i.e. the average over an ensemble of realisations (with r1 and r2 fixed) is the same as the spatial
average 〈φ(x)φ(x + d)〉x with d = r1 − r2

6.4.5 The PSF of images seen through a turbulent medium

• The 2-point function function ξψ(q) considered above plays a central role in imaging – it is also the
quantity that is measured in aperture synthesis radio astronomy

• show that for a telescope with aperture diameter D � rdiff (or equivalently D much bigger than
the Fried length) the point spread function g(r) – time averaged for a long exposure – is the Fourier
transform of ξψ(q)

• if we observe a scene, for which the brightness I(n̂) can generally be written as a Fourier sum of plane-
wave components, by what fraction are high-frequency components in the resulting image suppressed
as compared to low-frequencies (that are well resolved)

• discuss why it is said that g̃(k) defines the ‘spatial bandwidth’ of the imaging system

• using Kolmogorov scaling, show that, for a large telescope, the ‘2nd moment’ of the PSF 〈|r|2〉 =∫
d2rr2g(r)/

∫
d2rg(r) is ill defined (the integral in the numerator does not converge). Hint: establish

and use the relationship between moments of g(r) and derivatives of (̃k = 2πq/Lλ) at k = 0.

• show that, in fact, the ‘wings’ of the PSF have a power law form: g(r) ∝ r−γ and determine the index
γ

• while the width 〈|r|2〉 as defined above is ill defined, show that an alternative measure of the width

reff = (∇2g/g)
−1/2
r=0 is well defined

• discuss the effect of ‘fine-scale mirror roughness’ on the wings of the PSF

• discuss the relation between the various angular scales: diffraction, Fresnel, refraction, and telescope
resolution and speckle size

• pulse-broadening is said to arise from ”multi-path propagation”. If one had a sufficiently high resolu-
tion telescope, would one resolve the separate images that this terminology suggests?

6.4.6 The structure function of scintillation speckles

• in the strong scattering regime one may assume that the real and imaginary parts of the field amplitude
on the observer plane ψ(x) = a(x) + ib(x) are independent Gaussian random fields with structure
functions 〈a(x)a(x + d)〉x = 〈b(x)b(x + d)〉x = 1

2e
−Sφ(d)/2

• use this to show that the structure function of the flux density is

– SF (d) = 〈F (x)F (x + d)〉x = 1 + exp(−Sφ(d))
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Figure 31: From left to right, the surfaces show an initially flat wave-front and then the corrugated wave-front
– the ‘phase-screen’ that emerges after passing through some turbulent medium. For isotropic Kolmogorov
turbulence this has structure function Sφ(d) = 〈(φ1 − φ2)2〉 = (d12/rφ)5/3 were rφ (rdiff in the text) is
the separation for which the rms phase difference is 1-radian. The phase-screen here is a realisation of
a Gaussian random field with Pφ(k) ∝ k−11/3. The next surface shows the flux density F (x) on the
observed plane for a distance D such that the Fresnel scale rF ∼

√
λD � rφ, which is the ‘weak-scattering’

regime. This is essentially a ‘high-pass’ filtered version of the phase-screen; the ‘smoothing’ with the Fresnel
function exp

(
−|q|2/2r2

F

)
suppressing power at k� 1/rF, so the dominant fluctuations appear at the Fresnel

scale. Higher frequency modes undergo oscillation in the weak regime, ‘rotating’ from phase- to amplitude-
errors and back again. The resulting power spectrum is PF (k) ∝ k−11/3 sin2((krF)2/2) which as zeros at
frequencies such that the perturbation to wave amplitude is a pure phase shift. The rightmost surface
shows the ‘speckles’ that form on the observer plane at a greater distance such that rF ∼

√
λD � rφ,

which is the ‘strong-scattering’ regime. In this regime, any point on the observer plane receives significant
contributions to the wave amplitude ψ from a very large region on the scattering plane: ∆q . rref ∼ r2

F/rφ.
It follows – via the central limit theorem – that the real and imaginary parts of ψ(x) = a(x) + ib(x)
are statistically independent Gaussian random fields with structure functions Sa(d) = Sb(d) = 1

2Sψ(d) ≡
〈ψ(x)ψ?(x+d)〉x = exp(−Sφ(d)/2). From this one can show that the flux density F (x) = a2(x)+ b2(x) has
an exponential distribution: P (F )dF = exp(−F )dF and has a structure function SF (d) = 1+exp(−Sφ(d)).
The flux density vanishes at points – with observer plane density n ∼ 1/r2

φ – where both a and b vanish,

and the phase θ of ψ = |ψ|eiθ has ‘screw-like’ discontinuities (the phase wraps by 2π going around these
points) known as ‘phase-vortices’.

31



Wave-optics vs geometric optics (rays)
Figure 32: Transition between wave-
and geometric- (or ray-) optics. This
shows what happens in a telescope
with some kind of aberration (the
‘figure-error’ – top left). This is the
deformation of the wavefront, and
dividing by λ/2π gives the phase
φ(q). The the Fresnel-Kirchhoff in-
tegral convolves the Fresnel func-
tion with exp(iφ(q)), the real part
of which is shown at the bottom
left, and (squared) gives the flux
density on the focal plane (bottom
right). This shows the effect of multi-
path interference. The bottom cen-
tre panel shows the geometric optics
result which has caustics, the gen-
eral form of which can be seen in the
wave-optics image.
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Figure 33: Observer-plane flux density maps generated by a Kolmogorov phase-screen for various values of
the diffraction scale rdiff . The Fresnel scale was fixed to be 100 pixels, and the size of the box size shown
here is 20 times larger. These show how the character of the scintillation changes depending on the ratio
rdiff/rF. For rdiff � rF (upper left), we see speckles with size on the order of rdiff ; the modulation index
is large; and are uniformly distributed; there is very little modulation on large scales. That’s because the
refractive scale rref ∼ r2

F/rdiff – being the size of regions on the scattering screen within which there is
multi-path propagation – is very large for small rdiff and there is very little focussing on that scale (the focal
length is much larger than the observer-scattering screen distance D). As we increase rdiff (lower left) the
size of the speckles increases and rref decreases, so we start to see large scale flux density modulation caused
by the focussing effect of the rref -scale wavefront corrugations. At the other extreme (bottom right) where
rdiff � rF and we are in the weak scattering regime the modulation is strongest on the scale rF, but is weak
(note the scale bars at the right of the images).
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Figure 34: Blow up of part of the upper-left panel
in figure (33) which depicts the strong scattering
regime. The colour image is the ‘speckly’ flux-
density F (x) = ψψ?. Lines are where the real
and imaginary parts of the field amplitude ψ(x)
vanish. Where they both vanish F = ψψ? = 0.
At such dark points, the phase θ(x) of the field
(defined by ψ(x) = |ψ|eiθ) has a screw-like dis-
continuity ; the phase wraps by 2π if one follows a
path around a zero. So these are ‘phase-vortices’ .
In the strong scattering regime, the field ψ(x) re-
ceives contributions from many patches (of size
∼ rdiff ; the phase correlation length) and the
central limit theorem tells us that the field be-
comes a (complex) Gaussian random field. It is
fully determined by the auto-correlation function
ξψ(d) ≡ 〈ψ(x)ψ?(x + d)〉x = e−Sφ(d)/2, where
Sφ(d) is the phase structure functon or, equiva-
lently, by the power spectrum Pψ(k) = |ψ̃kψ̃

?
k|.

This explains the universal character of strong
scintillation.
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A Statistics of random fields

A.1 Discrete, continuous and semi-continuous Fourier transforms

A.1.1 The discrete Fourier transform in 1D

• given an array FQ where Q = {0, 1, 2 . . . , N − 1} is an integer index we define the discrete transform

– F̃K =

N−1∑
Q=0

FQe
2πiKQ/N

• for K = {0, 1, 2 . . . , N − 1}

• from which we find

–
∑

K F̃Ke
−i2πKQ/N =

∑
Q′ FQ′

∑
K e
−2πiK(Q−Q′)/N =

∑
Q′ FQ′NδQQ′ = NFQ

• where the fact that e.g. Re(
∑

K e
−2πiK(Q−Q′)/N ) =

∑
K cos(−2πiK∆Q/N) vanishes unless ∆Q =

Q−Q′ = 0, and similarly for the imaginary part, is most obvious – by symmetry – when N is a power
of 2, but is true in general

• so the inverse transform is

– FQ = N−1
N−1∑
K=0

F̃Ke
−2πiKQ/N

A.1.2 The Nyquist frequency and symmetry of the discrete transform

• F̃K=0 is the amplitude of the ‘DC mode’; F̃K=1 is that of the ‘fundamental frequency’, where 1 wave
fits in the length of the array, and the others are modes of increasing spatial frequency

• but only up to K = N/2, which is known as the ‘Nyquist frequency’ KN

– for which the phase factors e2πiKNQ/N = eiπQ = {1,−1, 1,−1, . . .} are real and simply oscillate
at the maximum allowed frequency

• higher values of K have phase factors that oscillate at lower frequencies

– this phenonenon being known as ‘aliasing’

• going down to K = N − 1 which oscillates at the fundamental frequency

• the phase-factor e2πiKQ/N is symmetric about KN: e2πi(KN+M)Q/N = (e2πi(KN−M)Q/N )?

• from which it follows that, if FQ is real, F̃KN+M = F̃ ?KN−M

– so F̃K , despite having N complex components is fully determined by N real numbers

• it is best to mentally ‘wrap’ the array F̃K , and think of K having negative as well as positive frequencies
that run from K = −(KN − 1) to K = +(KN − 1) with zero-frequency in the centre

– and with the Nyquist frequency component F̃KN
at one or other end

– as it is of neither positive or negative frequency
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A.1.3 The discrete Fourier transform in n-dimensions

• this generalises to n-dimensions (e.g. for a N ×N grid in 2-dimensions)

– F̃K =
∑
Q

FQe
2πiK·Q/N ⇔ FQ = N−n

∑
K

F̃Ke
−2πiK·Q/N

• where one should think of K values as living on a cubical lattice with DC mode K = 0 (more or less)
in the centre

• the asymmetry arising because the Nyquist frequency planes have to be put at either positive or
negative values

A.1.4 The continuous Fourier transform

• to make the transition to a continuous field, we let

– q ≡ εQ
– where ε is the physical ‘pixel size’, and

– k ≡ 2πK/Nε = 2πK/L

– where L = Nε is the size of the box

– so 2πQ ·K/N = q · k
– and we define

– f(q) ≡ FQ,

– and

– f̃(k) = εnF̃K

• in terms of which the forward transform is

– f̃(k) = εnF̃K =
∑

Q ε
nFQe

2πiK·Q/N ⇒
∫
dnqf(q)eik·q

– since the volume of a ‘voxel’ is εn so we can replace
∑

Q ε
n . . .⇒

∫
dnq . . .

• and the inverse transform is

– f(q) = FQ = 1
(2π)n

∑
K

(
2π
εN

)n
εnFKe

−ik·q ⇒
∫

dnk
(2π)n f(k)e−ik·q

– since the spacing in k-space is ∆k = 2π/L = 2π/(εN) and so
∑

K(∆k)n . . .⇒
∫
dnk . . .

• so, to summarise, for a continuous field f(q) we can define the forward and inverse transforms as

– f(q) =

∫
dnk

(2π)n
f̃(k)e−ik·q ⇔ f̃(k) =

∫
dnqf(q)eik·q

• where we note that f(q) and f̃(k) have different units

– if f(q) is dimensionless then f̃ has units of (length)n

A.2 The Dirac δ-function

• in the discrete case we used
∑

K e
−2πiK(Q−Q′)/N = NδQQ′

– whose generalisation to n-dimensions is

– δQQ′ = N−n
∑
K

e−2πiK·(Q−Q′)/N

– i.e. δQQ′ is the inverse transform of F̃K = 1 (evaluated at Q−Q′)

• in the continuous case we define
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– δ(q− q′) ≡ ε−nδQQ′

• which has the property that

–

∫
dnq′f(q′)δ(q− q′) = f(q)

– since

–
∫
dnq′f(q′)δ(q− q′)⇒ (

∑
Q′ ε

n)FQ′(ε
−nδQQ′) = FQ ⇒ f(q)

• and is the inverse transform of f̃(k) = 1, since (using ∆k = 2π/εN)

– ε−nδQQ′ = 1
(εN)n

∑
K e−2πiK·(Q−Q′)/N = (2π)−n

∑
K(∆k)ne−k·(q−q

′) ⇒
∫

dnk
(2π)n e

−ik·(q−q′)

• so if whenever we see something like
∫

dnk
(2π)n e

−ik·(...) we can replace it by δ(. . .).

• there are other representations of the Dirac δ-function

– one is as a limit of a normalised Gaussian δ(q) = limσ→0(2πσ2)−n/2 exp
(
−|q|2/2σ2

)
– which has transform δ̃(k) = exp

(
−σ2|k|2/2

)
– which is approximately unity for |k| � 1/σ

A.2.1 The semi-continuous Fourier transform

• all of the above is conventional

– though some people like to ‘symmetrise’ the transforms by using dnq/(2π)n/2 and dnk/(2π)n/2

– which is bad form

• for most fields we are concerned with it is very reasonable to think about the field as a continuous
function f(q)

• and, if we were dealing with a field f(q) with ‘compact support’,

– i.e. non-zero only within some volume of linear size l say

– assumed to be much smaller than the size of the fictitious periodicity volume L

• then f̃(k) is also a continuous field

– since the compactness of the support introduces a coherence in f̃(k)

– and it becomes effectively continuous if sampled on a grid with ∆k � 1/l

• but for the statistically homogeneous random fields – with infinite support — that we are interested
in here (see examples in figure 35) that is not the case

– for these the transform f̃(k) is always ‘grainy’ at a fine scale

– that scale being set by the fictitious volume size L

• this motivates an alternative – though equivalent – hybrid ‘semi-continuous’ formalism which proves
to be useful, and in which we define f̃k ≡ L−nf̃(k), defined at discrete values of k, in terms of which
the transform and inverse transform pair is

– f(q) =
∑
k

f̃ke
−ik·q ⇔ f̃k = L−n

∫
dnqf(q)eik·q

• and we note that, in this convention, f̃k and f(q) have the same units
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Figure 35: Some realisations of Gaussian random fields. They were generated by a creating 2D grid of
complex f̃k values with real and imaginary parts drawn from 1D Gaussian distributions (though the result
is insensitive to the actual distribution used) with width given by

√
P (k) and then performing the inverse

transform to generate the images. In each case P (k) was a power law P (k) ∝ kn. The left panel is for a
flat, or ‘white-noise’ spectrum: n = 0. The autocorrelation function for this vanishes except at zero lag. If
one were to smooth this by taking a moving average with a window of size L containing N pixels, the RMS

fluctuation ∆L would scale as 1/
√
N , or equivalently as ∆ ∝

√
(k2P (k))k∼1/L ∝ 1/L. The right panel is

for a very ‘red’ spectrum with n = −4. Here ∆L ∝
√

(k2P (k))k∼1/L ∝ L. The centre panel is for n = −2.

Here ∆L ∝
√

(k2P (k))k∼1/L is independent of smoothing scale; so there is roughly the same variance on all

scales. The structure function S(d) in this case increases logarithmically with separation d. For the right
hand image, S(d) ∝ d2. This is quite similar to the phase fluctuations imposed in wavefronts of light that
has propagated through a turbulent atmosphere or the ISM, for which S(d) ∝ d5/3 corresponding to spectral
index n = −11/3.

A.3 Autocorrelation function, power spectrum and the Wiener Khinchin theorem

• we’ll work in 2-dimensions (and the field will be f(q), and you might think of the phase error induced
by a scattering screen as a concrete example), but the results are readily generalisable

• we’ll imagine the field is periodic in a large square area A = L2

• so we can write f(q) as a Fourier series

– f(q) =
∑

k f̃ke
ik·q

– where the k-vectors lie on a cubical grid of spacing 2π/L and use

– f̃k = A−1
∫
d2qf(q)e−ik·q

– from which we can see that f̃−k = f̃?k, so φ̃k has mirror symmetry

∗ thus, we only specify the complex coefficients in half of the k-plane

∗ the other half following by symmetry

∗ and it follows that if the field is ‘pixelised’ on a grid the number of real numbers needed to
determine fq are the same as those needed to specify f̃k

• we define the autocorrelation function at ‘lag’ d to be

– ξf (d) ≡ 〈f(q)f(q + d)〉q = A−1

∫
d2qf(q)f(q + d)

– or, writing f(q) =
∑

k f̃ke
ik·q and f(q + d) =

∑
k f̃

?
ke
−ik·(q+d)

– ξf (d) =
∑

k

∑
k′ f̃kf̃

?
k′A
−1
∫
d2qei(k·q−k

′·(q+d)) =
∑

k

∑
k′ f̃kf̃

?
k′e
−ik′·dδkk′

– so
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– ξf (d) =
∑
k

|f̃k|2e−ik·d

– which is the Wiener-Khinchin theorem, which states that ξf (d) is the inverse Fourier transform
of the power spectrum

– Pf (k) ≡ |f̃k|2

• note that we are defining ξf (d) as a spatial average (integrating over all pairs of points with separation
d and dividing by the area A)

• an alternative would be to define ξf (d) as an ensemble average

– where we might set q = 0 and average, over an ensemble of realisations, f(0)f(d)

– in which case the W-K theorem would involve the ensemble average 〈|f̃k|2〉
– which looks rather different: it might be some smooth function of k, whereas |f̃k|2 is, like f̃k

‘grainy’ at a fine scale

– and one might worry that one then needs to define some kind of statistical model for how the
Fourier amplitudes f̃k are generates

– but the distinction is not really important, at least if we are dealing with fields (or ‘processes’ in
the jargon) for which things like ξf (d) tend to some sensible limit at we let the averaging volume
A→∞

– and this is indeed what we expect since, despite the fact that |f̃k|2 is grainy, when we use the
equation above to evaluate ξf (d) we are summing over |f̃k|2 times a smoothly varying function
(of k) eik·d, so all that influences the outcome is the local average of |f̃k|2

• the real distinction between the two types of power spectra arises as follows:

– one might use a model for the ensemble average power spectrum Pf (k)

∗ some smooth function of k

∗ for example here we have been using Kolmogorov’s prediction that Pφ(k) is a power law with
index −11/3

– to generate realisations of the field f(q) (as done to make figure 35)

∗ a common assumption being that the real and imaginary parts of f̃k are drawn from inde-
pendent zero-mean Gaussian distributions with variance Pφ(k)/2

∗ but, as we have just discussed, this does not influence quantities like ξf (d), nor does it affect
higher order correlation functions

– then, given a realisation, or given some data, one can measure the actual power spectrum |f̃k|2

∗ this will have some overall smooth variation – just like the ensemble – but with fluctuating
graininess modulating this

∗ for example, for the simulated data generated as above, |f̃k|2 would have an exponential
distribution (χ2 with 2 ‘degrees of freedom’)

– and one might then do some sort of local smoothing to estimate the ensemble average Pf (k)

– or one might generate, from |f̃k|2, the 2-point function ξf (d)

– and if one were doing this on a computer-generated realisation, the information in the graininess
of |f̃k|2 would not necessarily be lost.

∗ This graininess is high frequency structure in k-space, that would be encoded in what is
effectively noise in ξf (d) at large scales, where the ensemble average of ξf is essentially zero.

∗ Aside from problems with round-off error, one could recover the full grainy |f̃k|2.

∗ One would not, however, be able to recover from this the individual components Re(f̃k) and
Im(f̃k). We say that the ‘phase-information has been lost in extracting only |f̃k|2
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A.4 Gaussian random fields

A.4.1 The central limit theorem

• the central limit theorem says that if we have a set of N random variates xi drawn independently from
some probability distribution px(x)dx (which we will assume has zero mean) and we make the sum of
these: X =

∑
i xi, then X will, for large N , tend to have a Gaussian distribution:

– PX(X)dX = dX(2πσ2
X)−1/2 exp

(
−X2/2σ2

X

)
– where the variance σ2

X (which is equal to
∫
dXX2PX(X)) is given by σ2

X = Nσ2
x with σ2

x =∫
dxx2px(x), largely independent of the detailed form of px(x)

• the proof of this is straightforward:

– The distribution PX(X) is the multiple convolution of N factors px(x)

∗ for example, for N = 2, P (X) = P2(X) =
∫
dypx(y)px(X − y) = px ⊗ px

∗ and if we add a third variate, we convolve P2 with another px and so on

– the Fourier transform P̃X(ω) of PX(X) – called the ‘generating function’ – is therefore, by virtue
of the convolution theorem, the product of N -factors p̃x(ω): P̃X(ω) = p̃x(ω)N

– if N is very large then PX will be very broad compared to px

– so P̃X(ω) will be very narrow compared to p̃x(ω)

– so, for ω-values of interest, we can expand the exponential in p̃x(ω):

∗ p̃x(ω) =
∫
dxpx(x)eiωx '

∫
dxpx(x)(1 + iωx− ω2x2/2 . . .) = 1 + iω〈x〉 − ω2〈x2〉/2 + . . .

∗ but, by assumption, 〈x〉 = 0 so

∗ p̃x(ω) ' 1− ω2σ2
x/2

∗ and taking the Nth power of this and using exp(y) = limN→∞(1 + y/N)N gives

∗ P̃X(ω) ' (1− ω2σ2
x/2)N = exp

(
−Nσ2

xω
2/2
)

∗ whose inverse transform is another Gaussian

∗ PX(X) ∝ exp
(
−X2/2Nσ2

x

)
A.4.2 Gaussian n-point functions

• similar reasoning may be applicable to random fields. crudely speaking:

– since f(q) =
∑

k f̃ke
−ik·q is the sum of a very large number of random variates

– then its value at a point should have a Gaussian probability distribution

– and the joint distribution of the values of the field at a set of points should have a multi-variate
Gaussian distribition

• there may be good physical reasons for this (as, perhaps, in cosmology, where it may stem from initial
conditions)

• but in atmospheric or ISM physics this is perhaps more questionable

– the phase-errors behind a thin screen of turbulent ISM or atmosphere is unlikely to be accurately
Gaussian – even though it might well be reasonably statistically homogeneous in nature

– but a thick slab in projection probably is – because we are adding the effect of many eddies

– and it is more likely that the predictions of ‘fully developed turbulence’ for the structure function
or power spectrum would apply

– but in the strong scattering regime, even for a thin screen, the field ψ gets contributions from a
large area of the screen, so the central limit theorem should apply

– but it may be that the structure function of the phase fluctuations is different from the Kol-
mogorov predictions – as the ‘outer scale’ might be comparable to the scales one is sensitive
to
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• there are several types of interesting questions one can address with the Gaussian model (with ISM
related applications in parentheses):

– what is the joint distribution of the values of a field at a number of different places (e.g. the phase
φ or the EM field amplitude ψ)?

– what are the statistical properties of non-linear functions of a Gaussian random field (for example,
eiφ(q) appearing in the Fresnel-Kirchhoff integral for ψ, or flux density F = |ψ|2)

– for instance, in the ISM it would be nice to be able to predict the properties of light curves of
scintillating sources in order to address questions like:

∗ what is the probability distribution for the flux-density?

∗ what is the structure function for the flux density?

∗ how frequent are peaks in light curves? or other ways to characterise the size of speckles?

– with the goal being to relate these observable quantities to the structure functions of the ISM

• The multi-variate formalism proceeds as follows:

– consider some ‘vector’ of m values of the field f(q) at a set of points:

∗ f ≡ {f1, f2, . . .} = {f(q1), f(q2), . . .}
– what is the probability distribution P (f)dmf for the vector f?

∗ where we can think of this as the distribution over an ensemble of realisations

∗ or as a spatial average where we sample all possible values for q1 with the other qm − q1

held fixed

– each of the fm is a sum: fm =
∑

k fkm =
∑

k f̃ke
−ik·qm so the central limit says they will have a

Gaussian probability distribution

∗ P (f)dmf = dmf(2π|M |)−1/2 exp
(
−fiM−1

ij fj/2
)

∗ where the covariance matrix Mij = 〈fifj〉 =
∑

kmkij

∗ with mkij = 〈fkifkj〉 being the covariance matrix for the individual fk

– this works, despite the fact that we actually have different parent distribution functions p(fk) for
the different k, since we can think of the sum as being a double sum: a sum over volumes in
k-space of size ∆k � 1/∆q – within which we have identical p(fk) but still a very large number
of modes – so we get a Gaussian distribution for each volume and we can then convolve these
Gaussian distributions – which each have Gaussian generating functions, which get multiplied
together to get a final Gaussian generating function – to get the above result.

– finally, writing fki = f̃ke
−ik·qi and (using the mirror symmetry of f̃k) fkj = f̃?ke

ik·qj we get

∗ Mij =
∑
k

〈f̃kf̃?k〉e−ik·(qi−qj)

∗ which unsurprisingly says that the components of the covariance matrix are what we would
have gotten from the WK-theorem.

• it may be worth re-emphasising that the central limit theorem need not always apply

– one can have statistically homogeneous random fields (or ‘processes’) which are not Gaussian

– for which one can define autocorrelation functions and their relation to the power spectrum as
above

– the WK-theorem being independent of whether Gaussianity is obeyed

• but to the extent that the Gaussian model is applicable, it is an extremely useful tool

• in scintillation and imaging studies, for example:

– if we can assume that the phase error φ(q) is Gaussian with structure function Sφ(d)
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– then one can show that the complex field amplitude on the observer plane ψ(x) – a highly
non-linear, non-local and non-Gaussian function of φ(q) – has 2-point function (the ‘visibility’
observed by radio astronomers) given by 〈ψ(x)ψ?(x + d)〉 = exp(−Sφ(d)/2)

– and from this, in the strong scattering regime, where ψ(x) itself may be assumed to be a Gaussian
random field, we find:

∗ the flux density has an exponential distribution P (F )dF = (dF/F ) exp
(
−F/F

)
and

∗ the structure function of the flux density SF (d) = 〈(F (x)− F (x + d))2〉 = 1 + exp(−Sφ(d))

• so the machinery of Gaussian statistics provides very powerful links between properties of remote
scattering material and observable quantities
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