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1 Introduction

1.1 The birth of modern cosmology

Cosmology, as we now understand it, came into existence in a chronologically back-to-front manner.

The key events were: gﬂ

e Einstein: relativistic theory of gravity — general relativity (GR) — in 1915.
e Friedmann: expanding relativistic world-model in 1922
e Hubble: discovery (in 1929)

— that the nebulae he was observing were galaxies exterior to the Milky Way

— and that they were receding from us with velocity proportional to distance

1.2 The FLRW models

Lemaitre worked on applying GR to cosmology a little later than Friedmann. And in the 30’s Robertson
and Walker elucidated many features of these models, which nowadays go by the name of FLRW models.
It was established how observations of galaxy flux-densities (apparent luminosities) and redshifting of
spectral lines in galaxy spectra can be used to constrain the parameters of the model, which can be taken
to be the current ezpansion rate and the rate at which this is changing — the deceleration parameter.t
These models, dating back now nearly 100 years, are those which are still used by practising cosmologists
to interpret observations.

1.3 Physical interpretation of the FLRW models

At the time of Friedmann, and even up to the 60s, the understanding of GR was in a process of development.
The Schwarzschild solution for a black-hole, for example, was found in 1916, but the physical meaning of the
gravitational radius r = 2G M /c? was not fully appreciated for decades. In cosmology, the interpretation of
the FLRW models was also problematic, particularly in relation to the reason for the cosmological redshift.
One finds, in many text-books and articles, statements about the Wz’,and how this causes
light to be redshifted. One reads, in Harrison (2000) for instance, that “expansion redshifts are produced
by expansion of space between bodies that are stationary in space”. In many other works, the fact that
light is redshifted in an expanding universe is held to be gelf-evident. ; The FLRW metric contains the
expansion factor a(7), and the metric plays the role, in GR, of the potential in Newtonian gravity. If one
formulates Maxwell’s equations in FLRW coordinates, one finds a term (containing the Hubble expansion
rate H = a/a) that is widely interpreted as expressing the ‘coupling of electromagnetism to the gravitational
field’. This is not entirely crazy. In weak-field gravity, for instance, the metric is gag = 1as — 20003/ c?
where ¢ is the Newtonian potential. In FLRW models, the metric contains the scale factor, so it might not
seem unreasonable to describe effect of the cosmological expansion as a coupling to gravity.

But, on closer inspection, this falls apart. The gravitational field in GR is the fide — or the curvature
of space-time — not the expansion. In the foundations of GR, there is nothing one can really identify as the
‘expansion of space’ per se; all there are are measurable distances, from which one can distill the metric
(and which relates these to coordinate separations — which are arbitrary). Distances we measure between
galaxies are increasing, and the amount of space in a volume enclosed by a set of galaxies is increasing,
and indeed the total amount of space in a closed FRW model is a well defined and is, in general, changing.
But nowhere in GR do we find any way of actually measuring the expansion of space itself. Analogies are
often drawn with expanding rubber balloons, but the expansion of a balloon is something one can measure;
mark some points and then measure their distance with a ruler. In GR there is no way to anchor objects
to space-time. Indeed, the principle on which the theory is based is that locally space-time is Minkowskian.
Such space-time has an absolute sense of rotation — if you are rotating with respect to it then you can feel it
~ but i has no sense of expansion. In cosmology ‘stuff’ — including radiation — is expanding, but space, of
itself, is not. The idea that the expansion of space — or, as it is often said, the ‘fabric of space-time’ — is a real
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!Alan Sandage, who worked, as a student, with Hubble, and continued Hubble’s work after his death in 1953, famously
characterised cosmology as “the search for two numbers”.
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phenomenon with local physically measurable effects, is a pernicious ,one. In 1945, Einstein wrote a paper
with Ernst Straus entitled ‘The Influence of the Ezpansion of Space on the Gravitation Fields Surrounding
the Individual Stars’. They concluded that there is none, but that did not dispel the myth.

So there is a lot of historical baggage and misconceptions in the cosmology literature. One motivation for
considering Newtonian cosmology — which works perhaps surprisingly well - is that it helps to avoid falling
into some of these traps. In regard to the role of the expansion in affecting fields and particle motions, it
shows that the appearance of the additional ‘Hubble damping term’ is better considered not to be a physical
effect but simply a ‘coordinate artefact’.

1.4 The Newtonian analogy

In 1934 E.A. Milne, in two papers, one with Bill McCrea, noted the close resemblance of the Friedmann
equations to those of Newtonian dynamics and stated that “All of the phenomena observable at the present
could have been predicted by the founders of mathematical hydrodynamics in the 18th century, or even by
Newton himself”.

In the rather confused context of their time, Milne and McCrea’s Newtonian description of cosmology
is a useful one. It works because, in the FLRW models the high degree of symmetry means the dynamics is
purely local. While, in general, one can measure the tidal field due to distant matter — as we see the tidal
influence of the moon on the oceans, for example — in the FLRW models there is none. The only tidal field
is the local isotropic focusing of particles due to the attraction of the local matter — or repulsion if we are
dealing with quintessence or the cosmological constant. And the local dynamics involves velocities that are
small, so relativistic effects associated with the expansion velocities are negligible. And, as we shall see, one
can include the effect of relativistic particles (i.e. the radiation) by means of special relativity.

But it does not completely replace GR. What is missing is curvature. When Milne and McCrea wrote,
‘the phenomena observable at the present’ meant observations of objects at relatively low redshift, and
curvature only shows up when one goes beyond linear order in z (in the apparent luminosity and angular
diameter distances D, and Dy, say).

It is also useful in the context of modified theories of gravity to have a clear idea of what aspects of
cosmology would not change under such modifications (assuming that, like GR, they reduce to Newtonian
gravity in the appropriate limit).

1.5 Why didn’t Newton do Newtonian cosmology?

Before leaping into the mathematics of Newtonian cosmology one may reasonably ask the question above.
While not much cosmology appears in the Principia or in Opticks, there is correspondence between Newton
and the English philosopher Richard Bentley, in which he discusses the behaviour of an infinite distribution
of gravitating masses.

While he made progress in understanding what we would call today gravitational instability — the process
by which mass would aggregate into structures — he was less successful in developing what we would call
the background model?.

Bentley suggested that an infinite sea of stars — if initially at rest — would collapse to a central point.
Since there is no ‘centre’ for an infinite field of stars, this seems paradoxical. Newton resisted this and
‘solved’ the paradox by claiming that God prevented the collapse by making “constant minute corrections”,
though to be fair to him, he was not entirely happy with this divine intervention.

What Milne and McCrea pointed out is that had Newton considered the dynamics of an initially expand-
ing sphere of ‘dust’ (the dust being stars or galaxies; i.e. pressure-less matter) of a finite radius, he would
have seen that the radius plays no essential role in the dynamical equations. Thus, in Newtonian theory,
in which velocities can be arbitrarily large, the radius can be arbitrarily large, he would have obtained a
satisfactory solution for an infinite expanding universe, some two centuries ahead of Friedmann.

In working on the former, in the absence of the latter, he was applying what nowadays goes by the name of Jeans’ swindle



2 Radial orbits in the field of a point mass

2.1 The equation of motion

A particle on a radial orbit outside a mass M has acceleration

i =—GM/r? (1)

where GG is Newton’s gravitational constant, and dot denotes time derivative.
A consequence of this is that (twice) the energy per unit particle mass is

K =7#* — 2GM/r = constant. (2)

To confirm this, note that dK/dt = d/dt(7? — 2GM/r) = 277 + 2G M7 r? = 27 x (¥ + GM/r?) = 0.

2.2 Parametric (cycloid and hyper-cycloid) solution

Despite the simple form of the acceleration equation (1), there is no analytic formula for its general solution.
There is, however, a parametric solution. For the case of a bound particle, is the cycloid
r(n) = A(l — cosn)

B(n —sinn) (3)

~
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where A and B are constants.

The reason it is called a cycloid is that it is equation for the path of a particle on
the rim of a rolling bicycle wheel. For a wheel of unit radius, the path of the axle is
horizontal and given by: (zo,vy0) = (n,1), with 1 being the angle of rotation about the
axle.

A particle on the rim has trajectory given by (z,y) = (xo,y0)+ (sinn, cosn), the second
term being the displacement of a point on the rim from the axle, so

y=1-—-cosn
(4)

T =1 —-sinn

It is straightforward to prove that (3) solves # = —GM/r?. The derivatives with respect to conformal
time 7 (denoted by primes) are v’ = dr/dn = Asinn and ¢ = dt/dy = B(1 — cosn) so 7% = (r'/t/)? =
(A/B)?sin%n/(1 —cosn)?, from which we can eliminate sin in favour of 1 — cosn using sin? 7 = 1 —cos?n =
(1 —cosn)(1+cosn) = (1 —cosn)(2—(1—cosn)) so

AQ
2 = =12/(1 - cosn) — 1]
v (5)
_24%1  A?
~ B’r B?

which agrees with 72 = 2GM/r + K if A2 = ~KB? and AK = —GM or

A=-GM/K

6
B=GM/|K]>? ©)

This solution only applies if total energy K is negative — i.e. bound orbit. For such an orbit the particle
reaches maximum radius rma = 2GM/|K| at time tyax = t(n = 7) = 7GM/|K|3/? and falls back to 7 = 0
it T =t = 2rr) = Y-

On the other hand, if the particle has K > 0 — i.e. velocity exceeding the escape velocity — solution is a
hyper-cycloid, in which we simply replace sin — sinh and, paying regard to signs, we get

GM
r(n) = —7(coshn — 1)

GM (7)

t{n) = W(sinhn - 1)
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At late time (7> 1): r ~ (GM/K)e"/2 and t ~ (GM/K3/?)en/2, so asymptotically r = t/VK.

The cycloid and hyper-cycloid solutions are (for fixed central mass M) a family parameterised by (twice)
the total energy per unit test-particle mass K. They can also be thought of as being parameterised by k
(equal to +1 for the cycloid and -1 for the hyper-cycloids) and the time B = GM/|K|*/2. They are shown
in figure 1.
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Figure 1: Solutions for the motion of a particle launched on a radial orbit in the gravitational field of
point mass. The variable B = GM/|K|*/? has units of time and for the bound orbits (k= +1) is equal to
(73 ax/8GM)1/2. The ordinate here is a = r/(GM)Y/3. Left plot is linear-linear. Right plot is the same thing
but on a log-log scale. The dashed line is the marginally bound Einstein-de Sitter solution, which is the
limit as B — oo of either the cycloid or hyper-cycloid. At early times the curves become indistinguishable
as the kinetic and potential energy terms both become very large compared to their difference and the orbits
are, asymptotically 7(t) = (9GM /2)'/3¢2/3.

2.3 Behaviour at early times

At early times (i.e. n < 1), and for both cycoid and hyper-cycloid, the energy constant becomes negligible
(compared to 72 or 2GM /7)
Taylor expanding the solutions for 7 < 1 we have
r=(GM/K)n*/2+ O(1")) ®)
t=(GM/K*?)(n* /6 + O(n))

SO

1/3
(5"

for n <1 (or, equivalently, for ¢ < GM/|K|*?) and, defining density by p = 3M /473, time is related to
density by

Gp=— (10)

in accord with the usual relationship between dynamical (or orbital) time and density tayn ~ 1/4/Gp. These
relations apply at all times in the marginally bound case
3 A uniform density expanding dust sphere

Consider an initially uniform density sphere of ‘dust’ that is expanding with velocity proportional to distance
from the centre: 7 = Hr. A particle at the edge has equation of motion — the acceleration equation:

#=—GM/r? (11)

t



and so has a (hyper-)cycloidal orbit.

But, according to Newton, a particle at some smaller radius only ‘feels’ the acceleration from the mass
interior and that mass scales, initially, as 73, so GM/r? = (47/3)Gpr, which is linear in r, so, after an
interval of times dt the velocity will change by dr = #dt = —(47/3)Gprdt and hence the fractional change
in the velocity is dr/7 = —(4nGp/3H)dt which in independent of r.

So, in this interval, all the shells change their radius by the same fractional amount. Consequently the
shells remain nested in exactly the same order and the density remains uniform. What’s more, the velocity
still retains its pure Hubble-law form.

It follows that all of the shells have equation of motion

i = —(4n/3)Gpr | (12)

independent of their radius.
e Note that it was critical here to assume an inverse square attraction law.

So the time dependence of the solution is the same for all shells independent of r, and this implies that
an initially uniform density sphere remains uniform.
What’s more, observers inside the sphere can’t tell where the centre is.

e Q: doesn’t gravity vector g = —GMr/r3 = —(47/3)Gpr break the symmetry?

e A: for an electrically charged sphere it would since we can measure E (the analogue of g) by observing
motion of two test particles with different charge-to-mass ratio. But according to Galileo, in gravity,
all particles have same ‘charge-to-mass’ so there is no way, using motions of particles, to measure g.

e only the ‘tidal field’ - i.e. the way g changes with position — is measurable.

that means we can make the dust sphere as large as we like, and in Newtonian physics velocities can be
arbitrarily large, and all points within the sphere are equivalent.

All there is is a local expansion rate and local density which are the same at all points in space — and
the ‘tide’ is purely radial; any pair of test particles accelerate towards themselves in proportion to their
separation and the local density.

The ‘Galilean equivalence principle’ has effectively rendered the ‘boundary conditions at infinity’ — the
very distant edge of the sphere — unobservable.

e note, however, that this is only for a sphere; had we considered a uniformly expanding cube, for
instance, we would have observable effects from the boundary. The cube would not remain cubical,
for instance, and the expansion rate would not be isotropic.

To summarise:
e within the (arbitrarily large) sphere all points are equivalent with regard to local dynamics
e this being a special property of the inverse square attraction law

e and the equivalence principle played a direct and central role in making it possible to construct a
well-behaved cosmological model

— if one were tempted to try to construct a homogeneous and isotropic model in which the expansion
of the universe were a result of it having a net electrical charge, one would immediately face a
severe problem

This is all something that Newton could have figured out. He certainly thought about it, and discussed
it, but apparently he got it wrong. He realised what would happen for a finite sphere, but somehow
convinced himself that an infinite sphere would not behave in the same manner.



4 Friedmann, continuity and acceleration equations

4.1 Re-scaled or ‘comoving’ coordinates
Thanks to the spatial uniformity can re-scale the spatial coordinates for the dust particles according to
r=a(t)x (13)
where
e x is a dimensionless ‘co-moving’ coordinate
— effectively a label — that is fixed for each particle
e and a(t) is a universal scale factor

— it is the distance between a pair of particles that have unit comoving separation |x — x’ [ =1

4.2 The re-scaled energy equation
\/\—/V\/\,.

The energy equation is 72 = (87/3)Gpr? — K, where the constant K is, in general, different for different
particles.

But since @ = 0, 7 = za so both the first two terms scale in proportion to z2. Thus K must be
proportional to z? also.

Now K has units of velocity squared, so we can write K = kc?z? where k is a dimensionless constant.

Taking out the common factor 2?2 gives the re-scaled energy equation

a? = (87/3)Gpa® — ke? (14)

which, as we will see later, is identical in form to the general relativistic Friedmann equation.

But there k was the ‘curvature constant’ and was limited to be k = —1,0, 1, whereas here k is arbitrary.

But so is the labelling of the particles, and hence the value of a (at some chosen time) so we could, if
we like, and will require & = —1,0, 1.

In the relativistic framework, a is the separation between two particles that, asymptotically at late times
(in the hyperbolic case), increases at the speed of light.

Dividing by a? and gives the Friedmann (energy) equation in the form

(a/a)? = (87/3)Gp — kc?/a® (15)

just as in the relativistic FRW models.
While conservation of mass implies that the density varies as p o< 1/a® which implies the continuity
equation I

= —3(a/a)p| (16)

while differentiating the Friedmann equation and using continuity gives the acceleration equation

li/a = —(4n/3)Gp| (17)

which is what we started with.

These three equations are not independent — any pair of them implies the third, and any pair provides
two equations for the two functions of time a(t) and p(t).

As we will see later, the Newtonian formulae above are identical to the relativistic equations (for P = 0).

The reason, ultimately, that the Newtonian and relativistic treatments agree is that the form of the
latter is fixed by the fact that they need to properly describe the local expansion, which, thanks to Gauss’s
law, is independent of what is happening outside the local region

4.3 The expansion rate

The ezpansion rate is defined by

. (18)

- a

and has units of inverse time, Its value at the present epoch is usually denoted by Hy and is called the
Hubble parameter or Hubble’s constant. In the units that cosmologists like to use, Hy ~ 70km/sec/Mpc.



5 Cosmological observables in the Newtonian model

5.1 Redshift: Peebles’s argument

One of the key observables in cosmology is the redshift of light from distant objects. This is most simply
understood as being the accumulation of a series of small Doppler shifts as would be perceived by a set of
observers riding with galaxies along the light path. Newton would probably have had some trouble with
this since he believed in the ‘corpuscular’ theory of light3. (WMQW)

The finiteness of the speed of light — measured to ~ 20% precision by Ole Rgmer in 1676 — was however
already known to Newton by the time he came up with his universal law of gravitation (published in 1686).
So he would have been able to calculate the manner in which the observed intervals between emitted light
pulses would be dilated by the expansion of the cloud of observers, which amounts to the same thing as the
dilation of wave-length (in a wave-theory for light).

One might object this would require special relativity to give the Doppler shift. But in fact, as we
consider a sequence of small intervals, it is sufficient to use the 1st order Doppler shift formula dA/A = dv/c.
This is non-relativistic, in that we ignore the second order terms and the transverse Doppler shift, but does
depend on the finite speed of light.

Armed only with this, The redshift — change of wavelength at measured by an expanding cloud of observers
(so-called fundamental observers) — of light can be shown to be the same as the ratio of the scale factor at
reception to that as emission by considering it to be the product of an infinite number of infinitesimal shifts,
as explained by Peebles.

Considering the infinitesimal Doppler shift suffered by light travelling between two particles with in-
finitesimal comoving separation dx

e They have physical separation dr = adx

e and relative recession velocity dv = adz

e so the fractional change in wavelength is dA\/\ = dv/c = adz/c
e but a = da/dt and the time interval is dt = adz/c

e so d\/A=da/a

e which implies A < a

thus

)\obs a(tobs)
1 = = 19
i )\em a(tem) ( )

A useful alternative way of thinking about this is in terms of differences in time at the emitter and
observer between pulses or light signals:

dtobs

1 = .
T e

(20)

5.2 The redshift as a combination of a Doppler and gravitational effects

You might worry that there might be, in addition to the 1st order Doppler shift, a gravitational redshift,
but you don’t need to. Think of the light propagating from an observer at x = 0 to another observer with
an infinitesimal separation |x| = dz. The gravitational redshift is the difference in the potential, but the
potential, for a uniform density, is quadratic, so the gravitational redshift is ~ Gpdx?. When you consider
the finite path wavelength ratio as the limit as dz — 0 of the product of a lot of infinitesimal steps this does
not contribute; only the 1st order Doppler effects survive.

Similarly, for an infinitesimal separation you don’t need to worry about the fact that we were a little
loose in saying the relative recession velocity is dv = adz. What is a here? the value at the beginning of the
trip? At the end? Some kind of average? It doesn’t matter as it only affects the answer for an infinitesimal
interval at 2nd order.

3Query 29 of ‘Opticks’ is “Are not the Rays of Light very small Bodies emitted from shining Substances?”
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Einstein (1910) thought experiment

: ) ; -~ .
The gravitational redshift experiment. Let us first imagine performing an Flgur e 2: In Einstein’s tower thought experi

idealized experiment, first suggested by Einstein. (i) Let a tower of height ment he imagines a special machine — not one
h be constructed on the surface of Earth, as in Fig. 5.1. Begin with a that actually exists. but one that obeys Y i
)
—m . .
o4 of physics — that receives a mass dropped from

! to top of the tower and converts its energy F —
; rest-mass plus kinetic — to a photon of frequency
| v = E/h that is fired back to an identical ma-
: chine at the top that converts the photon back
u to a stationary mass (again conserving energy).

e Without the gravitational redshift this would be
Fig. 5.1 A mass m is dropped from a tower of height . The total mass at the a way to COHtinHOUSly extract useful energy from
bottom is cug:ene:{i into denerlgy a:nhd re;'umedllo the top a:h a pholor:. P:]\;pe;:nl . . . 1
motion will be performed unless the photon loses [
as the nulm gained in falling. Lighl‘;s therefore :d;“h‘i‘ned ::"i:’ c?imb;nlnni a Statlc grav1tat10na ﬁeld

gravitational field,

Einstein's calculation of the redshift in a rocket
e accelerated rocketeers

Figure 3: Einstein’s rocket thought ex-
periment. He considers a photon fired
from an observer at the back of an ac-
celerating rocket to another at the front.
He argues that there would be a 1st or-
der Doppler shift what would be the same
as the frequency shift for a pair of non-
accelerating observers (straight lines) who
are co-moving with the accelerating ob-
servers at the times of emission and recep-
tion.

® during time 0t = x / c it
takes the photon to make
trip the velocity of receiver
changes:dv =g dt =g x/ c.

® Doppler shift: ONMA = dv / ¢
=gx/c?

® But is this gravity?

However, if we consider an expanding dust sphere of finite size then, as first realised by Bondi, one
can think of the redshift as being a combination of Doppler and gravitational shifts (at least for modest
redshifts).

But as shown in figure 3, the combination ends up being solely the change in the separation between the
source and observer and the gravitational redshift is effectively hidden
5.3 Comoving-distance vs. redshift relation
What is the relation between the redshift of a source z and z, its comoving distance from us?

e in a interval dt light travels dr = —cdt so dx = dr/a = —cdt/a

e while 1 + 2z = ag/a (where subscript “0” denotes present value)

° so dz = —(ap/a*)da = —apadt/a® = —(ap/a)Hdt = (agH/c)dz and hence

¢ dz
_ - 21
. aq H(Z) ( )
with integral
c dz
_ 22
0

which, as we will see later, is the same is the relativistic formula for something called the conformal distance

X
To evaluate z(2):



Why is the gravitational-z hidden in cosmology? ¢ty

e Consider an expanding sphere of dust
and a source A at the centre sending a
photon to receiver B at the edge.

gravitational
blue-shift

e The photon suffers gravitational red-
shift climbing up the potential and
then a Doppler red-shift on reception

® For source B sending to A the photon
has a Doppler red-shift (as seen in our
frame) then enjoys a gravitational
blue-shift

\ Doppler

red-shifts

e But the net effect is the same.

gravitafional

® The opposite gravitational shifts are red-shift
cancelled by the Doppler shift change

Figure 4: Bondi showed that, for sources at low redshift at least, one can think of the cosmological redshift
as being a combination of a Doppler shift and a gravitational redshift. But somehow this comes out to be
just the change in the separation between the source and observer — a purely ‘kinematic’ effect. So, for
instance, in the situation shown at left, where if a photon is sent from A to B it suffers a gravitational
redshift while for the opposite direction it enjoys a blue-shift, the difference is cancelled by a corresponding
change in the Doppler component. This is a consequence of the highly symmetric situation.

e define critical density p. = 3HZ /87G
e and density parameter Qu, = po/pe
e and let Q) =1— Qy
then the Friedmann energy equation is
H%(2) = H3 [Qm(1 + 2)° + Qi(1 + 2)7] (23)

so the comoving distance of a source observed to have redshift z is

z(z) = Ha /dz/\/Q (14 2)3 + Q14 2)? (24)
0

so the physical distance — at the present epoch —

GpE|g) = /dz/\/Q (1+2)3 + Q1+ 2)? (25)
0

which, as we will see later, is the same as the relativistic result (with =z — x)

An interesting feature of the comoving distance in this model is that z(z) remains finite as source redshift
2z — 0o. This means that there is a horizon; all the sources we can see — which must have finite redshift —
lie in a finite volume of space.

5.4 Angular diameter and luminosity distances in Newtonian cosmology

The comoving distance x is not something that observers can easily measure. What they can measure is
the angular size  of distant objects and their apparent luminosities (or flux densities F').

If one has objects of known, or standard, size d, it is useful to define the angular diameter distance Dy(2)
such that § = d/Da(z).

And if one has objects of known, or standard, luminosity L, it is useful to define the luminosity distance
Dy(z) such that the flux density is F' = L/47D?.
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These are apparent distances. The angular diameter distance is the answer to the question: how far
away from us would the object (of assumed known intrinsic size d) need to be to have the angular size we
observe. The luminosity distance is the distance a source of (assumed known intrinsic luminosity L) would
have to be at — in a non-expanding universe — to have the flux-density we observe.

The reason that these quantities are of interest, is that one can calculate them using the formulae above,
and the results depend on the parameters Hy and €2,,,. So if one had some way of figuring out the intrinsic size
or luminosity (the latter being possible with type la with supernovae), one can determine these parameters.

If Newton had succeeded in developing Newtonian cosmology, what would he have had to say about the
apparent distances D,(z) and D (z)?

The answer to this is somewhat tricky. With regard to D,, he would certainly have pondered on the
influence of light deflection. In the 3rd of his trilogy ‘Opticks’ he has a series of ‘queries’, the first of which
is “Do not Bodies act upon Light at o distance, and by their action bend its Rays, and is not this action
(caeteris paribus) strongest at the least distance?”.

So he is here predicting the deflection of light by masses — and getting it wrong by only a factor two
— but what would he have said about light paths in a large — potentially very large - expanding uniform
density sphere?

It seems to me that, just as he struggled with the transition from a large finite sphere to an infinite
one (concluding that in the latter case the matter would remain at rest), he would have argued that, for a
spherical distribution of matter, the light rays would, by symmetry, have to be undeflected.

Thus, he would presumably have thought that the angular size of a ‘standard ruler’ is it’s physical
size d divided by its physical distance at the time that the photons left the source. That would lead to
D, = a(tem)r. Replacing a(tem by ap/(1 + z) we have

z

apx c dz

D = = .
() 1+2z 14z /) H(z)
0

(26)

Remarkably, this is in agreement with the relativistic formula in the case that the universe is spatially
flat. As you will see in the travaux dirigés, the angular diameter distance increases with redshift at low
redshift, but reaches a maximum and then decreases.

As regards the luminosity distance he would similarly have argued that for source emitting dn/dtey, = N
photons (light corpuscles) per unit time at the source the number of photons per unit time crossing a sphere
(on which reside observers who see the source to have redshift z) would be N X tem/tobs = N/(1 + 2).
The area of that sphere is A = 4m(apz(z))? so the flux density of photons at the observer is N/A =
N/[4m(apz(2))?(1 + 2)]. Equating that to the photon number flux density N/47D% one would see for the
same source at fixed distance D in empty space gives

Dy = agV1 + 2z = (1 + 2)%/?D,. (27)

Finally, using special relativity to argue that the energy of the photons is reduded by the redshift would
give energy flux-density F' = L/[47(aoz(2))*(1 + 2)?] so, on equating F = L/4wD? gives

Dg = ap(l+ 2)z = (1 + 2)?D,. (28)

The relation above between Dy and D4 is called Etherington’s reciprocity relation.

One should beware that the luminosity distance obtained above is strictly valid for so-called bolometric
flux densities where all the photons are detected and the total energy measured. In practice, which is more
often measured are flux densities measured with a broad-band filter in front of the detector, and, in the case
of CCD detectors which are most commonly used, the measured quantity is a number of photo-electrons. In
general, the appropriate apparent distance must be calculated by performing an integral over wavelength,
and, again in general, one needs to know the spectrum — or spectral energy density SED — to calculate this.
A good approximation may be obtained by measuring flux densities in a number of pass-bands, and using
the ‘colour’ obtained from the different pass-bands to make a correction to the luminosity distance. This is
called applying a K -correction.

These apparent distances one would obtain in the Newtonian picture — assuming light rays are undeflected
— are equivalent to the correct relativistic expressions, but only in the case that the universe is spatially flat
(k=0).

This is a real restriction on the Newtonian model. However, perhaps luckily, it turns out that our
universe is, or is very close to being, spatially flat.
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6 Structure formation in Newtonian cosmology

6.1 The Dmitriev & Zel’dovich equations

For N particles of mass m interacting under their mutual gravitational attraction Newton’s laws of motion
are 3NN second order differential equations

Gm; |rj - rzy3 (29)

These may be solved numerically provided initial positions r; and velocities 1; for the particles.
Writing this in terms of arbitrarily re-scaled coordinates r = a(t)x, so ¥ = ax+ax and ¥ = dx+2ax+aX,
(29) becomes

o a. ; a
X; + 25)(1' — Z ’X] = X1|3 axi (30)

where we have, somewhat arbitrarily, moved one of the terms in ¥ over to the right hand side.

What we are interested in is the motion of particles with initial conditions that are close to being in
uniform Hubble expansion with some initial expansion rate H (very close if we start at early times). So we
might lay down particles on a regular grid in r-space within some very large spherical boundary centred on
the origin and give the particles small displacements or and velocities I = Hr + d1 with ‘peculiar’ velocities
0T chosen to excite the growing mode (see below). This is illustrated in figure 4. The corresponding initial
conditions in terms of x-coordinates are

x=r/a and x=((H - a/a)r+dr)/a. (31)

Figure 5: It was Dmitriev and Zeldovich who first
wrote down the equations of motion for particle dy-
namics in re-scaled coordinates x = r/a(t). They are
precisely equivalent to the ordinary Newtonian equa-
tions (29) written in terms of physical coordinates r.
The ‘scale factor’ a(t) has no dynamical significance;
it is simply a book-keeping device and is completely
arbitrary. However, by a judicious choice of a(t) -
choosing it to obey the Friedmann equation — we can
arrange that the effective force term in (32) is caused
only by the density fluctuation. If we start with par-
ticles on a grid within a sphere the force vanishes. If
we perturb the particles off the grid as shown here —
though in 2-dimensions rather than 3 — the force can
be considered to be the sum of those caused by a set
of little ‘dipole’ sources (a positive mass at the head
and a negative mass at the tail of each of the little
‘tadpoles’.
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The sum in (30) will have two components: A ‘zeroth order’ acceleration that, in the limit that the grid
spacing becomes very small, is the same as the gravitational acceleration of a uniform density sphere, which
grows linearly with x;, plus a perturbation determined by the displacements from the grid (we may think of
the source of the gravity being that of the unperturbed grid of particles plus that of a set of dipole sources).
If we define the number density of particles in x-space n(x) = >, 0(x — x;) and on = n — 7 with 7 the
inverse of the grid cell volume in x-space, equations (30) become

A . . .. 4 I
i+ 225 - S0 / P on() X5 <2 . M) . @)
a a

|x — x;]3 a 3a?

But since a(t) is arbitrary we may assert that a(t) is such that the RHS of (32) vanishes. Since mm is the
mean mass density in x-coordinates, that means that m7/a? is the mean mass density 7 in r-coordinates,
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so vanishing of the RHS is

a 47G
o L

which is the Friedmann acceleration equation for a uniform density sphere (note that the density here is
proportional to 1/a® and so varies with time).
Defining the density contrast A(x) = dn(x)/7, vanishing of the left hand side implies

K=K

ot 2gx — GA(t) / Pz Alx) (34)

‘X o= Xi‘?’.

These equations, first derived by Dmitriev and Zel’dovich are those that are solved in so-called ‘N-body’
simulations. An example is shown in figure 5 in which the initial conditions are taken to be those predicted to
arise from quantum fluctuations of the inflaton field during an early inflationary phase. To be more precise,
the ‘background’ Friedmann acceleration contains, in addition to the mean density of matter, the effect of
the dark energy on the universal expansion. Also, the calculation of the force term — which, as written, would
be expensive to evaluate, is computed in a clever manner, with the long-range force component obtained by
solving Poisson’s equation numerically, making use of fast Fourier transforms for efficiency. But the essential
physics is contained in the -Z equations above.

Figure 6: DM particles in the Millennium simulation

Comparing with the original expression of Newton’s law (29) we see two changes. First, there is an
additional Hubble damping term 2H%;. As it is proportional to the velocity %, it acts like a friction. We will
see modifications like this in other equations of motions (Maxwell’s equations for radiation, or the Klein-
Gordon equations for a scalar field). While often described as being due to the gravitational field of the
expanding universe — i.e. the effect of the ‘expansion of space’. But in reality, such terms simply result from
working in a non-physical coordinate system. Another useful way to think about the damping term is that,
Jjust as a photon will be seen to have energy that is decreasing by FOs that it is passing, massive particles
have momenta that appear to decrease (again as measured by observers who are expanding away from each
other). Secondly, we see that the right hand side — the so-called peculiar gravitational acceleration — is
driven only by the matter density fluctuations dp(x,t) = p(t)A(x, ).
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6.2 Linerarised equations for structure growth

If we have a situation like that shown in figure 4, where the displacement of the particles is smooth and
continuous, we can think of the displacement as a field dx(x) obeying

0x + 2Hox = =V ¢ (35)

where the gradient operator is in x-coordinates, and ¢ is the potential generated in Poisson’s equation
V2¢ = 4rGpA.

If the displacements are small compared to the length scale of the density fluctuations, the latter will be
small in amplitude, and, working only to 1st order in the density perturbation A, this is just given by the
divergence of the displacement field: A(x) =V - dx.

So if we take the divergence of the structure growth equations, these become

A+ 2HA — 47GpA = 0. (36)

These equations admit solutions which are the sum of growing and decaying modes: A(x,t) = A4 (x)Dy(t)+
A_(x)D_(t).

In general, the time evolution functions must be obtained numerically. The situation is greatly simplified
in the case of a critical density universe: Q, = 1 (and hence Q) = 0) for which 47Gp = 3H?/2 and H = 2/3t
and, postulating a power-law D o t%, the differential equation becomes the quadratic one: 3a? +a —2 =0,
with solutions & = —1 (the decaying mode) and a = 2/3, for which A o t?/3 x a.

For density perturbations introduced at very early times the structure will be essentially all in the
growing mode. The way in which initially small density perturbations get amplified with time is historically
dubbed gravitational instability. But that is something of a misnomer; what is happening here is that the
~structures are evolving in an expanding in such a way that the potential perturbations associated with the
structures is actually constant in time.
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