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1 Hubble’s discovery of the expanding universe

e Hubble observed Cepheid variable stars in “spiral nebulae” (late 20’s)

— period-luminosity relation: period — L — distance D

large distances firmly established them to be well outside of the MW

— external ‘galaxies’

he combined these with Slipher’s spectra — redshift — “recession velocity”

he found that the local universe is expanding

— recession velocity roughly proportional to distance

— Lemaitre had earlier shown the same thing (published in French)

Later studies extended the ‘Hubble diagram’ (magnitude vs log-z) to larger distances and improved
precision and accuracy

— ¢z = Hyr with (current) ezpansion rate Hy ~ 70km/s/Mpc ~ (1.4 x 10%0yr)~?

— departures on small-scales — growth of structure — ‘peculiar’ velocities

— and departures from linearity on very large scales D ~ ¢/H

Hubble’s observations — apparent distances as a function of recession velocity — are (and were at the
time; 1929) interpreted in terms of homogeneous and isotropic world-models (Friedmann, 1922) based on
Einstein’s then newly created general theory of relativity (GR, 1915). Let’s now introduce the salient features
of GR:

2 The essential features of Einstein’s theory of gravity

2.1 The Galilean equivalence principle

In@ there is no ‘force’ of gravity; the fact that all objects fall the same way under the influence of gravity
(the Galilean principle of equivalence) allowed Einstein to 0 propose t that g av1ty is curvature _of space-time
and that partlcles follow stralght hnes —or geodesms — in space- t1me -

e The curvature of space-time tells matter how to move. (John Wheeler)
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Figure 1: The Hubble diagram over the ages. On the left is Hubble’s original plot from 1929. In the centre
is a modern determination using supernovae. The red box at the lower left indicates the range of data that
Hubble used. On the right is shown a compilation by John Huchra of historical estimates of the present-day
expansion rate Hp. A common feature of such measurements is an underestimate of systematic errors that

plague measurements of cosmological distances.
~

2.2 Space-time is everywhere locally the same as in special relativity

Just as the surface of a smooth object like an apple is locally flat and indistinguishable from Euclidean
space, the so-called ‘manifold’ of space-time is assumed to be everywhere locally indistinguishable from
Minkowskian space.

Now, living on Earth, we don’t see that; we see the effect of gravity everywhere. But to see the true,
locally Minkowskian, nature of the manifold of space-time, one need only jump out of the window of a tall
building. Until you hit the ground, there is no gravity. According to Einstein, going into free-fall locally
‘nulls-out’ the effects of gravity.

That means that there is a Jjghi;g\og_é: @wtgﬂ bui;lt”i_\nt“o the magifgld of (s/p\a’ce—tig\l/e It is an abso-
lute property of space-time. The light cones allow one to categorise 4-vectors — the separation between
neighbouring two events being the prototypical vector — into 3 classes:

1. time-like: a pair of events that a massive particle — or ‘observer’ — can travel between
2. space-like: a pair of events that no observer can travel between

3. null: a pair of events that can be linked by a photon — whose path lies in the light cone

and all freelg falling observers, no matter how they are moving, agree on this categorisation.

Anotherlabsolute property|of space-time is that, while there are a family of possible freely falling observers
at any point mmepending on how they are moving and how they are oriented — they can sense.
if they are rotating. There is, again locally, a non-rotating frame that is somehow intrinsic to the manifold.

In special relgtivity, all physical laws are expressed in terms of 4-vectors and tensors. An example
is given by Maxwell’s equations, which can be expressed as lz Yuy = Ko 1ju where F,, is the Faraday 4-
tensor containing the components of the E and B and where j — j* is the 4-current, and this obeys the
continuity equation Vf — j# , = 0. Einstein proposed that all such laws remain valid (locally, and in
terms of quantities measured by freely falling observers) even in the presence of gravitating matter.

2.3 Matter controls the curvature of space-time via its stress-energy tensor

In Newton’s theory, the gravitational potential ¢ is generated by the density of mass p via Poisson’s equation:

V2¢ = 4nGp (1)

and the effect of the tidal field — second spatial derivative of the potential — on separations of freely falling
———’/\W—\/—M,—r N
particles is

0%¢

A l - U
. 83:181:]

Einstein argued that the generalisation of this is the geodesic deviation equation, in which the tidal field
is replaced by the curvature tensor.
In special relativity there is a rank-two symmetric tensor T, whose 10 components T*" are



o T the energy density (equal to pc?)
e 7Y the momentum density vector

° IiO» the energy flux density vector (equal to the momentum density) .

e T the stress or pressure 3-tensor (the flux density of momentum)

For slowly moving masses only 7°° is important (the others are suppressed by powers of v/c or v?/c?) and
— aside from the factor ¢? — is the same as the mass density p.

This led Einstein to propose that, in a relativistic theory of gravity, the source of gravity must be the
@@éo he set about determining an analogue of Poisson’s equation (1) with, on the right
hand side, T.

And, just as V¢ = 0%¢/0z;0x; is a contraction (the trace) of the tidal field 3-tensor, he reasoned that
the left-hand side must contain a rank-two tensor constructed from the geometric curvature tensor.

In determining this, he was guided by the fact that T obeys the continuity equation VT = 0. Ie found
that there is an essentially unique rank-2 tensor G determined from the curvature of space-time that obeys
the same law. We call G the Finstein tensor in his honour, and it is this that is driven (or ‘sourced’) by
the stress-energy tensor in Finstein’s equations:

(3)

This equation expressed the way that, in the second part of John Wheeler’s beautiful aphorism, “matter
tells space-time how to curve”. It contains a single free parameter s, and correspondence with Newtonian
theory requires k = G /c*.

Concerns about the implications of (3) for cosmology led Einstein to propose to add an extra term Ag
to the left-hand side, where A is a constant, known as the cosmological constant.

3 Brief review of the machinery of general relativity

Special relativity is all about how the world appears to observers in relative motion with respect to each other;
hence the word ‘relativity’. General relativity is sometimes said to be founded on Einstein’s equivalence
principle, stated in the form that gravity and acceleration are equivalent. We saw in the last lecture how the
metric of space-time with coordinates tied to rulers and clocks in an accelerated rocket appears ‘warped’;
clocks run faster in the nose of a rocket as compared to the tail.

That, together with the EEP as stated above, might lead one to think that this warping is a manifestation
of the gravitational field. But that would be entirely misleading; the gravitational field in GR is the
curvature. And in an accelerating rocket the curvature vanishes. There is no gravitational field. Similarly,
most phenomena we observe sitting on the Earth — balls falling, photons being redshifted in the Pound
& Rebka (1959) experiment etc. — are not directly measuring the gravitational field qua curvature; that
appears only when one looks at the relative acceleration of objects at widely different places in the field.

Motions of particles and the form of e.g. the equations of electromagnetism in an accelerated frame are
an application of generalised covariance. The manner in which such equations can be expressed in terms
of arbitrary coordinates was a major part of Einstein’s massive contribution to science in 1915. But it still
‘just’ special relativity, and should not be confused with gravitation.

As argued by Synge in his textbook, the very terminology general relativity is rather bizarre, if not
repellant. There is really nothing ‘relative’ about the gravitational field. If the 256 components of the
curvature tensor vanish — as they do for the metric we developed to describe physics in an accelerating
frame — then there is no gravitational field.! Whereas if there is curvature, then it is, as a geometric
entity, absolute (though the components of the curvature tensor depend on the relative frame of motion or
orientation of the measurer).

Misner, Thorne and Wheeler, in their textbook, argue that one should draw a clear distinction between
the fact that special relativistic laws of physics can be expressed in an arbitrary coordinate system and
the effects of gravitational curvature — including the fact that there is no a priori geometry in GR. We will
follow their advice here, and first, in §3.1, develop the mathematics of SR —1i.e. flat space-time — in arbitrary
coordinates and then, in §3.2, generalise this to curved space-time.

"Wolfgang Rindler takes a very different view from Synge on this. Rindler believes that the phenomena in an accelerating
frame can be thought of as gravitational field arising from the rest of the matter in the Universe — which, from the perspective
of the rocketeer, is suffering a ‘reflex’ acceleration.
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3.1 Generalised covariance (MTW )

The mathematics of tensor (and vector and 1-form) calculus in curvilinear coordinates is well demonstrated
by the case of 2-dimensional Euclidean space. The extra complexity of the fact that space-time is 4-
dimensional and is non-Euclidean — the metric being reducible to diagonal form with one negative eigenvalue
— does not greatly change things.

3.1.1 Curvilinear coordinates in 2-dimensions

This is illustrated in figure 2 which shows the 2D Euclidean plane with usual rectilinear coordinates {z,y} —
here these will, mostly, be denoted as primed coordinates — and overlaid contours of curvilinear coordinates

§(z,y) and n(z,y).

B basis 1-forms
M = di ¢ = d. s .
el J J Figure 2: The long curved lines show
& °°mT”e”‘ surfaces of constant curvilinear co-
<, V= Vg, V1T ordinates &(z,y) and n(z,y), which
n s o1e
= 4 are functions of the rectilinear coor-
basis : =¥
» il p=p.+pen  dinates {z,y}. The vectors € and
= — .. @ areso-called ‘coordinate basis vec-
o pe=pCey) p,=p(ey) 5 .
& =dy tors’; eg¢ points along the n = con-
=2 o =L+ L gy = de .
n — @=gdrtgdy= stant surface from one iso-¢ surface
i @v:%}ziﬂj_;”jy:jﬂ to the next. As shown, an arbitary
n= &" = dx % i vector V' can be expressed as a sum
’ E=4 & — (_,_) . ,
£=0 &=2 xy \ax’ oy of basis-vectors times components.
& —s (Z_"Z_"> Also indicated are the basis 1-forms
xy x’ dy ~ ~
© @¢ and Q.
3.1.2 Basis vectors and 1-forms
A vector V' can be expressed as
V =Vvee, (4)

where {2} = (&, 7n) and where, as usual, we are using the summation convention. Note that the subscript «
here is not an index; it is a label indicating which basis vector we are referring to. Each of the basis vectors
here has two components, which would be indicated by a superscript.

A 1-form p, perhaps p = d¢ — Da¢, can similarly be expressed as

D= pa‘:)a (5)

where {@®} are a set of basis 1-forms.
The basis vectors are not generally orthogonal to one another, nor are the basis 1-forms, but the former
are orthogonal to the latter in the sense that the number of iso-z® surfaces pierced by €z vanishes if o # 3,

and is otherwise unity:
w*(ep) = d3. (6)

This means that we can extract the a" component of a vector 1% by letting it act on W%, since

V(™) = VPeg(@) = VAsg = ve. (7)

3.1.3 Bases for tensors

We can use outer products of basis vectors and 1-forms to generate bases for tensors of arbitrary kind. For
example, the stress-energy tensor

d*p,
- [P iwres )
can be written as
T =T%¢, & (9)



where the 7% are the contravariant components of this particular tensor and the €, ® €3 form a basis for
rank-2 tensors in general. The outer product é, ® €3 here is that thing which, acting on an ordered pair of
basis 1-forms wH, @Y, gives

(€ ® €p) (", 0Y) = Ea(@H)Es(w") = 0505 (10)

h

so we can extract the (i, )™ component of T by letting it act on the two 1-form bases: T*” = T(w*,&").

3.1.4 Transformation of the bases

The rectilinear (primed) frame components of the curvilinear (un-primed) basis vectors €, and 1-forms &“
are seen from figure 2 to be

(ga)ﬁ/ = Aﬁla = S

0z,

oxe (11)
e y = Aa ;=
(@%)p 5= Bam

where we have defined the transformation matrices for transforming between the two ‘frames’. These are
analogous to the Lorentz transformation matrices for boosts and rotations.
It follows that the curvilinear bases can be expressed as linear combinations of the rectilinear ones as

Ex = (82)7 85 = NP 2

: p (12)
0® = (%) P = AP
while the inverse transformation is
€g = Ao‘ﬁ,é’a
~B' B ~a (13)
w” =A@

since the matrix inverse of e.g. A%, = 9z 9z is A = 0z )9z

3.1.5 The derivatives of the basis vectors — the connection

The rectilinear-frame basis vectors €, are independent of position. It is for that reason that we did not use
them explicitly previously. The variation of their curvilinear counterparts €y, however, play an essential role
when we work with derivatives of vectors (or other geometric entities) since these are (sums of) products of
components and bases.
Since € is independent of position, it follows from the first of (12) that
. déq

8(1’@’ = W = AB a7ﬁé’ﬂl (14)

and, using the first of equations (13) we have

Eap = N g AP 52,
oY 828 (15)

—

OxP Jx20xh ©

Thus the derivative of a basis vector can be expressed as a linear combination of the basis vectors:

(19

with coefficients, known as the connection or the Christoffel symbols,

oxY 8228
0xP Jxedxh’

s =AgA 5= (17)

One should note that, despite appearances, these are not the components of a tensor; they don’t transform
in the correct manner. It follows from the latter form above that the connection is invariant under exchange
of the lower two indices.



3.1.6 The covariant derivative of a vector field

The derivative of a vector field V(&) = V®(Z)&,(Z) with respect to the 8" spatial coordinate is

05V = 85(V&a) = V580 + Vlap
= Va’ﬁga + VCT"’agei, (18)
= (V7 g+ T7o8V)E,.

If we contract this with the components of a displacement dz we get the change in the vector dV = daP 8517.
It follows that V7 3+1"7,3V® are the components of a (mixed) rank-2 tensor which we can write symbolically
as
VV = (VY g+ 17,5V 0" @8, (19)
— ————

V7

with the understanding that it is the basis 1-form that gets fed the displacement dz. If we feed VV the
4-velocity of a particle U = di /dT we get the rate of change with respect to proper time of the vector field
along the world-line of the particle dv /dr. This is sometimes written as dV/ dr = Vg V. Similarly for an
arbitrarily parameterised path Z(\), if we feed VV the tangent vector di/d)\, we get dV/ d.

The key take-away from the above is that (again despite appearances) V7 g are not the components of a
mixed rank-2 tensor (something that we can dot with a displacement to get the change in the vector), but

those of O
[ VW — V"Y; = v7 p+T7 5va (20)
e = ol

are. We call VV the covariant derivative of V.

3.1.7 Derivatives of 1-forms and tensors

One can do the same thing with 1-forms, scalars, tensors etc.. The derivative of a scalar is straightforward,
No Christoffel symbols are involved; for a scalar field ¢(Z), ¢.o = ¢.q, just the ordinary partial derivative.

This gives a quick way to figure out the components p,.g of the covariant derivative Vp of a 1-form p.
Both ordinary (partial) and covariant derivatives obey the usual rule when applied to a product, so, taking
the ordinary derivative of the scalar p,V* we have

(puvu),u — p,uV#,u + pu,uvu (21)
but this is the same as
(puv'u);l/ = puV“;y + p#;uvﬂ

= pu(V¥ oy +TH0 V) +pp VH

and subtracting (21) from (22) gives
(pu;u - Pu,u)V” = _p,upucwva = —PaFaWV“ (23)

where, in the last step, we have swapped the dummy 1ndlces ,u < . For this to be true for any 1% implies

P——
’(Vp — Puw = Py — r v Po- ‘ (24>

The same argument can be generalised to give derivatives of tensors of any rank; the covariant derivative
is the ordinary partial derivative plus a series of terms, one per index, involving a Christoffel symbol times
the tensor in question. These enter with a sign that is positive (negative) for upstairs (downstairs) indices.
Thus, for example,

T =T, + 1T = 17, T (25)

in which, when we deal with the upstairs index (in the second term) we contract with a downstairs index in
the Christoffel symbol, and when we deal with the downstairs index (in the last term) we contract with the
upstairs index in I'“,,,. As always, the ordering of downstairs indices in Christoffel symbols is arbitrary.
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3.1.8 Determining the connection from the metric

Equation (17) above gives the connection in terms of the transformation matrix G s and its partial deriva-
tive. The same transformation matrix determines the components of the curvilinear-frame metric:

9ap = A" oA ggor (26)
which follows from invariance of ds® = gagd:r“dxﬁ , and where, in Minkowski space, the rectilinear-frame
metric iS gogr = N/ pr-

It proves to be very useful to have an explicit expression for the connection in terms of the components
of the metric (and their derivatives). This can be obtained using the fact that the metric g is independent
of position: Vg = 0. Thus

Japiv = Gap,y — F’Yaug'yﬁ - F’Y,Bugay =0, (27)
which tells us how the curvilinear-frame components of the metric need to vary in order that g = g G RoP
remains constant.

The trick needed in order to obtain an explicit expression for the connection from this is to write down
three equivalent forms of this by permuting the indices (i.e. letting the third index be v, o and  in turn)
and take the sum of the first two minus the third. This gives 2I'* 908 = 9840 + 96v,u — Guw,p from which
we find the explicit expression

I = % gaﬂ (9Buv + 9pv — Guv,8)- (28)

inverse of gup

This should be familiar; it is what appeared in the geodesic equation obtained in the last chapter, and

which, in terms of the Christoffel symbols, is
dn?Y
j—x + 7 wpfp” =0 (29)

This is no coincidence; recalling that p' = dZ/d\ (where d\ = dr/m or lim0 dr/m for a massless particle)
m—

and with p'= p7€, we have

di _dpt . | dé, dpt . | _dat 08,
DT N T O N
dp” dp” (30)
= ﬁgv +p' TV 8 = (E)T + Pvuvp#pu> €y

where, in the last step, we swapped v < v. So (29) is simply telling us that, for paths that extremise 7, the
components p? vary along the path in such a manner that p’= p7€, remains constant.

3.2 Differential geometry on a curved manifold

A section of a curved 2-dimensional manifold — it might be the surface of an apple, and it is assumed to be
smooth — is shown in figure 3. We can imagine blind ants living on this surface who are equipped with tape
measures with which they can measure distances — along extremal lines in the surface — between points on
the surface.

It is obvious that, with a little ingenuity, the ants can determine that they are on curved surface. They
could, for instance, lay out a set of points that are equidistant from some central point, and then measure
the circumference and compare it with the radius. For the surface shown in the figure, they would find that
the circumference is generally smaller than 27 times the radius, and they would find that the fractional
deficit grows quadratically with radius. But, if they were on a saddle-shaped surface, they would find
that there is a quadratically growing fractional excess to the circumference. Writing the circumference as
| =2rr(1—r%/R?+...) allows them to determine a local squared radius of curvature R?, which would be
negative on a saddle.

What else can they determine about the geometry of the surface? Clearly, if they were not blind and
could measure distances off the surface they would be able to measure the deviation of the surface from a
flat reference surface — a so-called ‘tangent plane’. And this would be described by 3 numbers; which one
could take to be the squared curvature radii for the principle axes and an angle giving their orientation. But
that would be a measurement of the extrinsic curvature. Armed only with measurements in the manifold,
what can they learn? If they are on an egg, for instance, can they tell, from local measurements, that they
are not on a sphere?



Figure 3: A portion of a 2-
dimensional manifold on which lines
of (unprimed) coordinates z% =
(&,m) are shown along with a set of
points (events in 4D). Distances —
in the manifold itself, not taking a
‘short-cut’ through the fictitious em-
bedding space — can be measured us-
ing pieces of string or rulers. This al-
lows the determination of the metric;
which we can think of as a distillation
of such distance measurements.

3.2.1 The metric

On the section of the 2D manifold shown in figure 3 someone has drawn lines of constant coordinates &, 1.
These are also assumed to be smooth and to foliate the surface. Scattered within some relatively limits
regions are glued a set of little pucks with labels (an index i) and with their ({,7) coordinates written on
them in braille (so our ants can read off their coordinates).

Our ants can measure physical distances (in the surface) dl;; between pairs of points and can also read-off
the coordinate displacements (d¢,dn);;. If they square the former, they find, empirically, that the results
vary, in the limit of small separations, bi-linearly with the displacements in 2% = (£, ) coordinates:

di* = gopdz®da® (31)

where we use, as always, the summation convention.

This furnishes the ants with a 2 x 2 symmetric matrix at some point Z. They can repeat this exercise
at different positions on the manifold. In this way, they can determine the components of the metric gos(%)
as a function of position Z. And from this, they can obtain the partial derivatives g, that appear in the
formula above for the connection. They will find, in general that these are non-vanishing.

It is important to realise that the metric is something measurable. It is a distillation of measurements
of physical distances. As we will elaborate, it allows one to determine the curvature of the manifold.
The components of the metric depend also on the arbitrary coordinate system that was imprinted on the
manifold.

3.2.2 Local flatness theorem and locally inertial coordinates

At any point on the surface, the ants can erect a locally Euclidean coordinate system. They can, for example,
stretch out a measuring tape across the surface to define the z-axis, and mark off intervals of constant physical
distance. Taking a pair of points on the z-axis they can find a set of points that are equidistant, which they
can take to be the y-axis and which is orthogonal to the z-axis. Mathematically, this is described by saying
that the displacements dz® = (dx, dy) are a linear transformation of the displacements dz® = (d¢, dn):

dz® = AY o dz®. (32)
With dz® = Ao‘a/dxo‘/, where A“,s is the inverse of Aa'a, the line element is

dl? = gaﬁdajadmﬂ — Aaa/AﬁB/gaﬁ dd)a/dﬂfﬂl (38)
S ——
9o/ B!

where, by construction, g, g = diag{l,1}.

There is clearly some freedom in how they can do this (the direction of the z-axis). Mathematically,
this reflects the fact that the metric gog, being symmetric, has only three degrees of freedom, while the
transformation matrix has four.

This is at a point Zy, which we can take to be the origin. The local flatness theorem states that, given
some manifold with a set of coordinates defined on it and with a metric g distilled from measurements of
distances as described above, one can always find a coordinate system with which, at any given point, the



metric is as above — i.e. locally Euclidean in the 2-D case illustrated above — and, moreover, that deviations
appear only at 2nd order in distance from the point.

The details are given in appendix B, where it is shown that while (32) derives from the linearly trans-
formed coordinate system z®(Z) = A% ,z%, if we make a 2nd order Taylor series expansion z® (7) =
AY oz + %Aa/a/jxamﬁ (so A"‘/ag = 82xa//8xa8x5 at Zp) for which

dz® = (AY o + A o 52P)da® (34)
then we find
d52 = A#M,Auu,dx#’dg;u’ [qu + z7 {g/.“,’,y — gﬁVABa/Aa,u’y o glLBAIBa,Aa/u’y} + .. } § (35)

where g, and g, are the components of the metric and their first derivatives at 7y and ... denotes terms
of 2nd or higher order in displacement from .

Thus if, given the curvilinear frame metric components g,,, and their derivatives g,,, s at Zo, we can find
a set of transformation coefficients A w that make the quantity in parentheses {...} vanish then we will
not only have g,/,, = d,,,» at Ty but its derivatives g,/ will vanish there also.

But we know how to solve {...} = 0; we simply need to choose A"/,,7 so that AP/ AY vy = F'Bw where the
Christoffel symbols are calculated from g, and g, using (28). It doesn’t matter that (28) was obtained
in the context of a flat space-time whereas now we are working on a curved manifold; the algebra is valid
regardless.

Thus the required 2nd derivatives in the transformation above are

¥

Fo e

=A% g =AY T,
axaaxﬁ B Y B (36)

where we may note that the symmetry of I'? .3 under « <& f assures that we have just the right number of
degrees of freedom in the connection to determine 92x® /99"

This is valid for arbitrary manifolds, either locally Euclidean or locally Minkowskian, subject to the
constraints of smoothness and also that the inverse of the metric in (28) exist; which is essentially the
requirement that the coordinates we have laid down are such that the determinant of the metric be non-
vanishing.

With the transformation above, we obtain a prime-frame coordinate system in which the 1st derivatives
of the metric components vanish, and consequently the connection also vanishes in the primed-frame:

I g = 0. (37)
And this means that the geodesic equation is
d?a® JdN\? =0 (38)

so, for the case of interest — a locally Minkowskian manifold — particles following geodesics have world-lines
for which the primed coordinates increase linearly with proper time, and their paths are unaccelerated.
These so-called inertial coordinate systems can be realised by freely falling observers carrying rulers and
clocks, as illustrated in figure 4.

3.2.3 Beyond local flatness

As an alternative, we might have argued, somewhat loosely, but correctly, that the number of coefficients in
the second-order term involving 8%z /0z*dx® in N dimensions is N?(N + 1)/2, there being N choices for
o' and N(N +1)/2 choices for « and 8 (N where oo = 8, plus N(N —1)/2 where a # [3), which is the same
as the number of independent components in go/g 4 since gog is symmetric, so the transformation above
should have enough freedom to render g,g . = 0.

What if we try to extend this and consider a 3rd order Taylor expansion of IO‘I(:E) with an additional set
of coefficients 9%z /0z*0zPdx7. Can we use this to find a coordinate system in which the second derivatives
of the metric g,/ s also vanish?

Let’s do this in 2-dimensions. The metric derivatives — being symmetric under o < ' and ' < §' -
has 3 x 3 = 9 independent components — while in ma/’g,ﬂ; the index o’ can take values 0,1, while the distinct
combinations of the other indices are (vd) = (000), (001), (011) & (111), for a total of 2 x4 = 8 independent
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Figure 4: Inertial coordinates z® can be realised by having a massive freely falling non-spinning observer
carry a set of rigid rulers on which there are other (massless) observers with clocks. This is shown at the left.
The clocks are assumed to have been synchronised by exchanging light signals. These observers can record
the % coordinates of events that are labelled with the general coordinates 2. From this they can establish
the transformation matrix A%, = 9z*/8z® of the mapping z® = z%(z®). As illustrated at the right —
with the tower there to remind us that we are in the presence of a gravitational field — we can have multiple
inertial frames that are moving and/or rotated with respect to each other. They form a 6-parameter family.

components. So we do not have enough freedom at our disposal to make go/g 5 vanish. But we are only
short by one; this says that the curvature of a 2-dimensional manifold is described by a single number at
each point.

Coming back to the question posed at the outset, evidently the blind ants cannot sense the orientation
of the egg! They can send out a pair of lines from a point with a certain opening angle and measure the
deficit in the length of the arc joining their ends as compared to the Euclidean expectation. Or they can
send a pair of ants marching along initially parallel paths and sense the change of separation. But the result
of any such experiment is independent of the direction they do this measurement. Only if they were to do
non-local experiments such as circumnavigating the egg can they learn, for example, that they are not living
on a sphere.

More generally, the number of distinct combinations of 3, v & ¢ indices in ma/,gﬁ,g is, in general, N where
all indices are equal plus N(N — 1) where two are the same and the other is different and N!/(N — 3)!3!
where they are all different (that is if N > 2; for N = 2, as we saw, there is no way to have 3 indices all
different). Multiplying by N, for the possible values of o/, gives N(N? + N!/(N — 3)!3!) (or 80 for N = 4)
as the number of independent combinations of indices of z® B85

On the other hand, gog s has, in general, (N(N + 1)/2)? independent components, so for N = 4 there
are 100 independent components.

Thus the intrinsic curvature in 4D is characterised by 100 - 80 = 20 numbers, and, in general, the
curvature in N dimensions is characterised by (N(N +1)/2)2 — N(N? + NI/(N — 3)13l) = N*(N? — 1)/12
numbers (which works for N = 2 if we define (—1)! = 0).

In 4D then, the curvature — which we will see shortly is a tensor — has 20 independent components.
This is more than the 6 independent components of the Newtonian tidal field tensor ¢y ;; that appears in
the Newtonian geodesic deviation equation d?Awx;/dt? = —¢n,ijAz;. That’s not unreasonable as we would
expect the relativistic version of this to involve a 4-vector rather that a 3-vector displacement.

3.2.4 Parallel transport

In flat space (or space-time) we can compare vectors at different points simply by comparing their rectilinear-
frame components. A vector field V/(Z) is constant if OV = Vo/ﬂ/ = (. The curvilinear components of
such a field will vary with position, but the covariant derivative will vanish: vV — Veg =0

Given a vector V at a point in a curved manifold one can @ t@@ it along a line. This can
be realised physically on a 2-dimensional curved surface as follows: if 310u drive over a line of wet paint,
the vectors between the splotches of paint are parallel transported. Another way to construct a sequence of
vectors that are parallel-transported copies of one another is by means of ‘Schild’s ladder’, as illustrated in
figure 5.

Mathematically, a vector that is being transported along a curve Z(\), with tangent vector U= dz/\

11



Figure 5: Left: ‘Schild’s ladder’. If we have a vector (here Xo) at some
point # = Ay, and a path Z(N) through that point, we can make a parallel
transported copy X1 of Xo at A1 by erecting a vector A1 (Ao + Xo) We
then construct a vector from Ay to the mid point of that vector and extend
it the same distance. This gives the end point of the vector X,. If we make
the steps of the ladder smaller we obtain in the limit the (scaled down)
parallel transported vector along the path.

has components that locally obey
dV/d\ = V53V — UPV®5 =0 (39)

just as in flat space(-time). The reason this remains valid is that it only involves first derivatives (of com-
ponents and basis vectors); the curvature appears, as we will see, only when we consider second derivatives.

But there is an important distinction: On a flat manifold, the result of transporting a vector is indepen-
dent of the path and we can unambiguously construct a constant field. On a curved manifold, the result of
parallel transport depends on the path taken, as illustrated in figure 6.

Figure 6: Parallel transport on a sphere. If we have a vector (here )ZO) at some
point ¥ = /To, The result of parallel transporting a vector on a curved manifold
depends on the path taken. If we transport a vector around a closed loop, the end
~"\result will not agree with what we started with. For a small loop — one for which
|the dimensions are small compared with the radius of curvature of the sphere in
" | the case illustrated — difference is proportional to the area area of the loop. This
property serves to define the curvature tensor. It can be thought of as a machine,
or sub-routine, that takes an initial vector 17, 2 other vectors @ and b that can
be the edges of a parallelogram loop, and returns the change AV. It is a rank-4
tensor.

Woncordinate  treatmen| .

3.2.5 Covariant differentiation of fields

If we have a vector field V(a’:’) defined on a manifold, the covariant derivative VV is the answer to the
question: how does the field change with respect to a parallel transported copy of itself ¢ This is illustrated
in figure 7. It is well defined as a limit; but the change for a finite path is path dependent.

Figure 7: We define the covariant derivative VV of a vector
i field V(&) to be the rate at which the field is changing with
respect to a parallel transported version of itself. Starting with
the value of the field at ¥ we make a parallel transported copy
Vp at a nearby position ¥+ AZ which we subtract from the value
of the field there to give AV. The components of the difference
vector are given by (AV)“ =V 3Az8 where the components
V<5 of the rank-2 tensor VV are given by the same formula as
in curvilinear coordinates in flat space-time.

3.2.6 Curvature

The curvature tensor E can be defined as the change AV obtained after transporting a vector V around a
parallelogram defined by two vectors @ and b (see figure 8).

12



4 Figure 8: Curvature may be defined in terms of parallel trans-
port of a vector around a loop, which can be taken to be a small
parallelogram. The change in the vector depends on the origi-
nal vector and the 2 vectors defining the path in a linear manner:
. AV = R(, V,a, 5), which is the equivalent, in GR, of the Newto-
Riemann nian (tidal) gravitational field. It is computable from the connec-
CU rvature Tensor ti.on, Which.in tI}I‘Il derives from the metric', and when c-ontracted
gives the Einstein tensor on the LHS of his field equations.

We can write — in geometric notation —
AV =R( ,V,d,b) (40)

or — in component notation —
AV® = R, VEa!b". (41)

One way to calculate the curvatur , which must be expressible in terms of the connection, is illustrated
in figure 9. . é ‘

........ | P T7
..................................... s -

Figure 9: To calculate the curvature — the change of a vector 1%
when transported around a loop — we first construct a vector field
V) =V0) - I 5(0)V7(0)z? by parallel transporting Vv (0)
from 0 to points & on the loop. We then use that as an approxi-
mation to evaluate the integral in AV® = — § daPT'% 5(Z)V ().
_,Note that we need here only 1st order precision for both I'“, (%)
X Jand V7(Z) in order to obtain an approximation to the integral

that is valid at second order in the loop size.

The result of this is the Riemann curvature tensor, expressed in terms of the connection by

R =%y — T g, — {v & p} ’ (42)

which evidently contains both derivatives and products of the Christoffel symbols.
It is a bit tedious, but one can show that the symmetries of the Riemann tensor are such that it does
indeed have 20 independent components in 4-dimensions.

3.2.7 Geodesic deviation

Curvature plays a key role in the equation of geodesic deviation. (see figure 10):

d25 " « o vy ¢f
vl (R¥uguP"p”) € (43)

tidal field tensor

whereby the curvature controls the focussing — or defocussing — of neighbouring geodesics. In Newtonian
gravity the same role is played by the gravitational tidal field:

& _ —£- VV¢ (44)
dt? N SN—— .
tidal field
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P4 P @ AP =R(,p, &,47) Figure 10: Geodesic deviation. This is a space-
7D time diagram; time increases vertically. We

start with a particle with 4-momentum p(0) at

the bottom right. We can choose a parameter

A along the path — proportional to the proper

— dx time on a clock carried by the particle such that
p= dr P = dZ/d\. Clone the particle and parallel
)= transport it’s momentum along the separation
d~¢ =R(.,7 2’ ) vector £ to make p’(0). We have two particles
dA? T with parallel momenta. Advance them forward
2 e in time (or ) to make p(\) and p”(\) which will
D¢ = (R%p D" p¥)EP mo longer be parallel (unless there is no curva-
Da? ture of space-time). Transport /() back to the
location of the original particle and subtract the

P(0)
P(0)

tidal field momenta. The result Ap'is, from the definition

d2 £ X of curvature, as indicated. But since p'= d_@' /d\,

E» L ¢ij‘§j the rate of change of Ap'is the same as d2£/d\2.
da? This gives the geodesic deviation equation.

3.2.8 The Ricci and Einstein tensors

The Ricci tensor is defined to be the contraction of the Curvature tensor on the 1st and 3rd indices:
R, = R7,,. This looks like a candidate for the left hand side of the field equations. But it does not obey
the continuity law R*,, = 0. But, it turns out, if one subtracts from it half of g times the Ricci scalar
R = RM, the so-called Einstein tensor

Guw = Ry — 59,0 R (45)

does.

3.2.9 Einstein’s equations

The geodesic deviation equation allows one to identify certain components of the Riemann tensor with the
corresponding components of 9%¢/ Ox;0x;. This ties down the single free parameter x in Einstein’s gravity
to be k = Gx/c* so Einstein’s equation becomes

G = 87(Gn/c")T (46)
where, just as it is a contraction of the tidal field tensor — its trace ¢;; — that appears in Poisson’s equation
V2¢ = 4nGnp (47)

the Einstein tensor G is a certain contraction of the rank-4 curvature tensor.

3.2.10 Raychaudhuri’s equation

A related useful result is Raychaudhuri’s equation. While the relative acceleration of a pair of particles
depends on both the tidal focussing caused by the local matter and the tidal field coming from distant
matter. But the latter does not change the volume occupied by a collection of particles. If one takes the
inverse cube root of the volume: a = /V, and, if one assumes an irrotational flow — a sensible approximation
in an expanding volume element as momentum conservation implies that any rotational motions decay -
one finds that this obeys the equation

4
i = —%TG(p +3P/A)a (48)

This is exactly as in Newtonian gravity except that pressure appears along with the density. This is one of
the fundamental equations of cosmology.

14



3.2.11 The cosmological constant

Einstein obtained the field equations G = 87xT, which are the simplest compatible with Newtonian gravity
with p replaced by T as the source, in 1915. In 1917, in order to allow static (non-expanding) solutions with
vanishing pressure, he proposed the modification

G + Ag = 8nkT (49)

which introduces a new constant of nature A with units of inverse length squared.

If we move this over to the right-hand side of the field equations, we see that a positive A would correspond
to a matter source with T# = (A/8mk)diag(1, —1, —1, —1), or, equivalently, to matter with positive density
p=T%/c? and strong, but negative, pressure P = —pc?. Le. matter with strong tension.

This means that a positive A causes a pair of test particles to accelerate away from one another — because
the pressure terms in p+ 3P/ ¢? outweigh the effect of the density — rather as would a negative mass density
without pressure or tension.

With the discovery of the expansion of the universe, the cosmological constant was discarded. But it
has re-emerged recently with vigour, and in two different situations.

First, in the theory of inflation it is assumed that the dynamics of the universe was at early times
dominated by the effect of a nearly spatially constant and slowly time-varying relativistic scalar field dubbed
the ‘inflaton’ (a cousin of the Higgs field, if you like).

Second, in 1999, it was shown convincingly? that the universe is now entering an accelerating phase.
This is naturally interpreted as the effect of the cosmological constant or, perhaps, the influence of another
scalar field analogous to the inflaton.

3.3 What is the gravitational field?

In Newtonian gravity we have the potential ¢, the gravitational acceleration g = —V¢ and the tide ¢i; =
82@5/6352835]

In Einstein’s gravity we have, analogously, the metric g,,,,, the connection I'*,,, and the curvature R? 545

Which of these deserves to be called the gravitational field?

The answer is the curvature. In many situations, one can have non-trivial metric tensors —i.e. coordinate
systems in which g, # diag(—1,1,1,1) - and non-vanishing connection also. These include simply working
in curvilinear coordinate systems, such as spherical coordinates, but can also be used include affects of
acceleration, as in a rocket, or on a rotating roundabout. But they have nothing to do with gravity per se.

The curvature, on the other hand, vanishes in such situations, and it would be zero everywhere and
always in a world where Einstein’s constant s (or Newton’s Gy) were zero. The curvature, or tidal field,
considered as a geometric entity R is generated by the presence of matter T (along with boundary conditions;
the field equations, like Poisson’s equations, not providing explicitly all the components of the curvature). If
it vanishes — and being a tensor, its vanishing or not-vanishing is an absolute fact — then there is no gravity.
In this sense, there is nothing ‘relative’ about general relativity.

This makes nonsense of the oft stated form of ‘Einstein’s principle of equivalence’ (EEP): that gravity
and acceleration are indistinguishable.. If you are being accelerated in a rocket out in empty space then
there is no curvature; the gravitational field vanishes. Adopting this view, we would have to say that Pound
and Rebka did not measure the gravitational redshift in their celebrated experiment in 1959. What they
measured was merely the affect of their apparatus being accelerated.

A better way to state the EEP is to say that, if you are freely falling, you will not see any effect of
gravity (locally). Note that this is very different from the situation with e.g. electromagnetism, where one
can measure e.g. the electric field E locally. Fundamentally that is because, in electromagnetism, particles
generally have different charge-to-mass ratios, whereas in gravity, the Galilean equivalence principle — that
all particles fall the same way under the influence of a gravitating body — means that all objects have the
same effective charge-to-mass ratio.

2A critical addition to the Hubble diagram for supernovae was the evidence from the CMB that the spatial curvature of
the universe must be very close to being spatially flat, so this required something to augment the rather low measured matter
density.
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4 Homogeneous Expanding Universe Models

4.1 The Friedmann, Lemaitre, Robertson & Walker (FLRW) world model
4.1.1 The cosmological principle

Observations — particularly of the cosmic microwave background (CMB) — show our universe to be highly
1sotropic on large scales.

Establishing that the Universe is spatially homogeneous is more difficult, but there is good evidence for
that as well.

At the time of Hubble there was very little firm evidence for either. But, perhaps presciently, or perhaps
because the only solutions of Einstein’s equations were those of very high symmetry, cosmologists adopted the
cosmological principle that the Universe is spatially homogeneous (i.e. that, aside from local irregularities,
it looks the same from all points in space — at a given time).

A subset of cosmologists went further than this and argued for what is called the perfect cosmological
principle: that not only does the Universe appear the same at all points in space but also at all times.
This was not widely adopted?, but, interestingly it is now believed by most cosmologists that both during
inflation in the very early universe and in the distant future as well, the Universe will become time invariant
and obey the perfect cosmological principle.

4.1.2 Cosmic-time, comoving coordinates and fundamental observers

In a homogeneous universe that started with a big-bang, a useful time coordinate is the proper-time 7 since
the explosion. This is called cosmic time.

We now need to set up three spatial coordinates. We choose these to be tied to so-called ‘fundamental
observers’ — which we can think of practically as galaxies — to whom the universe looks identical at equal
cosmic time.

We can take one of these observers to define the origin of the spatial coordinates. We will choose it to
be the Milky Way, but it could equally have been any other galaxy. And, since the universe looks isotropic
around us, we set up angular coordinates #, ¢ such that solid angle on the sky is

d0? = df? + sin® Odp*. (50)

Light comes to us from other galaxies along lines of constant € and ¢.

Local flatness implies that, in our vicinity, space-time looks Minkowskian, so ds? = —dt* 4 dx?+dy? + dz>
where t is coordinate time. But for galaxies close to us, with small recession velocities, v is close to unity
and dr = dt/v is close to dt with only O(v?/c?) corrections, which we’ll ignore for now. Making the
transformation of spatial coordinates (z,y, z) = a(7)r(sin 6 cos ¢, sin 6 sin ¢, cos 6)

ds? = —c2dr? + GQ(T)(dTQ + r2(d6? + sin® 0d¢?)). (51)

Here a(7) is the universal scale factor, with units of length, and is chosen so that other local fundamental
observers have constant r, 0, ¢, which are called comoving coordinates and which are all dimensionless.

This metric — or world model — has the symmetries required by the cosmological principle, but is only
valid in our local neighbourhood. This form of the metric is said to be spatially flat, because the spatial
part of the metric is Euclidean. It turns out, in fact, that our Universe appears to be spatially flat, to a
very good approximation, but it didn’t have to be like that.

The situation here is analogous to 2D geometry on a planar surface or on a sphere, as illustrated in
figure 11. Both of these are homogeneous spaces — all points on a plane or sphere being equivalent — but
the latter can be thought of as a generalisation of the planar metric dI? = dr? +r?d¢? with r? = f(r), with
f(r) chosen to be R = sin(r/R).

In fact, there is another generalisation of the plane that is a space of constant curvature, which is the
saddle, for which f(r) = Rsinh(r/R), as illustrated in figure 12.

Similarly, a generalisation of the metric above that respects the symmetries of isotropy and homogeneity
is to replace r?2 = f2(r). But, as in 2D, the requirement that the curvature be independent of position

3In 1953, Herbert Dingle, who was president of the Royal Astronomical Society said ‘Since it causes me considerable dis-
comfort to use names that are clearly misleading, 1 shall refer to the “cosmological principle” as the cosmological assumption
and to the “perfect cosmological principle” as the cosmological presumption’
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Figure 11: Illustration of the line element di* =

2 gagdmadmﬁ in polar coordinates on a plane (left) where
2 RO 012 = ar? + r2d¢? and on a sphere embedded in 3-

Pipe\ D (right) where di?> = R2(d6? + sin?(0)d¢?). Both

< b spaces are homogeneous and isotropic and locally flat.

Lo WA 112 The metric on a sphere can be written as dI? =

: y\‘ dr? + f%(r)d¢?, where r = R6, with particular choice
T for the function f(r) = Rsin(r/R), for which choice
< the curvature is independent of position. For small
@ ®) displacements from any point — which can be taken to

be the pole — the two metrics are equivalent.

Figure 3.2: (Reproduced from Carroll & Ostlie’s Modern Astrophysics).

i

Figure 12: In 2-dimensions there are 3 choices of
geometry that are homogeneous and isotropic: the
sphere, the plane and the saddle. They are distin-
guished by whether the circumference of a circle is
less than, equal to, or greater than 27 times the ra-

C=2wh C<2wD

k{V dius. An alternative way to determine the curvature
‘mﬁ locally is to take a vector and ‘parallel transport’ it
. around a small closed loop and differencing the trans-
Zero curvature Positive curvature Negative curvature ported copy from the original (see ﬁgure 8)

restricts the form of the function. To obtain f(r) it is sufficient to consider the ‘equatorial plane’ 6 = /2
on which 2D surface (at some chosen cosmic time) we know that the curvature is characterised by a single
number. We can take this to be (|AVy| —|AV}])/|V|A where V is a radial vector lying in this surface and
AV, and AV, are the changes in the vector when transported either first radially and then tangentially or
in the opposite order around a loop of area A, as illustrated in figure 13. For this to be independent of r
requires that

1"/ f = constant (52)

where the prime denotes differentiation of f(r) with respect to 7. The possible solutions are, unsurprisingly,
Rsin(r/R)

flr) = r (53)
Rsinh(r/R)

where R is the curvature radius in comoving coordinates.

4.1.3 The FLRW line element

If we define x = r/R, which is often called conformal distance and absorb R into the scale factor, we obtain
one of the conventional forms for the FLRW line element

ds® = —2dr? + a®(7)(dx? + Sk (x)?(d6? + sin? §d¢?)) (54)

where the spatial coordinates (x, 0, ¢) are dimensionless fixed labels attached to fundamental observers (FOs)
who carry clocks measuring proper time 7, and where

sin +1
Sk(x) = X for k=<{ 0 (55)
sinh y —1

where k is the curvature constant (sometimes called the curvature eigenvalue).

The spatial geometry — i.e. the geometry of hypersurfaces of constant time 7 — may be analogous to
a sphere (called a hypersphere), flat (Euclidean) or hyperbolic (saddle-like), depending on the curvature
constant k.
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metrics | d = dr? + PR Figure 13: In 2-dimensions, the intrinsic curva-

Y T ture of space is defined by a single number; how
A For+ A+ V)06 much a vector changes if you carry it around

v a loop keeping it parallel to itself divided by

A the area of the loop (and the length of the vec-

1= fr+ VYA tor). It has units of inverse area. It’s illustrated
Al it here on a plane. For a Euclidean space — one for
which dl? = dr?4r2d6? there is no change in the

] E vector. But for a more general circularly sym-

change of vector . : .
when transported  1€tTIC Space — or the equatorial slice through

|AV,| = (f(r + Ar + | V|) = f(r + Ar)AO
~f(r+An|V|AQ

around a loop a 3-dimensional spherically symmetric space —
[AV, | = (f0r + [V]) = f(r)AO
=f(NIVIA0 INARNARVAG)

with dI? = dr? + f%(r)d6? - the curvature is
[AV, | = [AV,] = |V]AO X (f(r+ Ar) -y CUMVAI® ——5a—— =73 non-zero and is equal to f”/f. Homogeneous
|AV,| - [AV,| = £ V] ArA0 ) - spaces must have f”/f = constant, the possi-

AA = f(ArAD arce o lege ble solutions of which are f(r) = Rsin(r/R),

f(r)=ror f(r) = Rsinh(r/R).

We can read off from (54) the components of the metric (in 7, x, 8, ¢) coordinates
g — diag{—c?,a®,a*Si(x)*, a*Sk(x)” sin” 6} (56)

As in special relativity (Minkowski space-time), the (squared) interval of proper separation between
neighbouring ‘events’

negative timelike
ds® may be Zero for null intervals 57
y
positive spacelike

The scale factor a(7) is analogous to the radius of curvature of a sphere. For k = +1, so Sk(x) = sin(x),
the range of y is finite, and if we take a radially directed spatial geodesic (extremal line on surface of 7 =
constant) from one pole (x = 0) to the other (x = 7), it has length ma(7), and if you extend it twice as far
you get back to the starting point. Such models are said to be (spatially) closed. If composed of ordinary
matter, they are also closed in time as they end in a ‘big-crunch’. For k = —1, the universe is infinite in
extent, and is said to be spatially open. In all cases, if we consider a region of the universe of physical size
much less than a(7), the effects of spatial curvature are small.

The line element has many uses. For example, if we observe a distant spherical object of proper diameter
dl that is lying in the surface # = 7 /2 then the coordinate displacement vector across the object is (0,0, 0, d¢)
for which the proper separation is ds = a(7em )Sk(X)dd = dl where 7oy, is the cosmic time when the photons
we observe left the object. This gives the angular diameter distance D, = dl/d¢ = a(Tem)Sk(x) which, if
k # 0, is different from the Newtonian expression. The latter, however, coincides with the relativistic result
if k=0, which appears to be a good approximation for our universe.

Another useful form for the metric is obtained if we define a new dimensionless time coordinate 7 such
that

cdr = a(r)dn (58)

in terms of which the line element is
ds® = a®(n) (—dn* + dx* + S;(x)(d6* + sin® 6d¢?)) (59)

where a(n) = a(7), and which is said to be a ‘conformal transformation’ of the simper metric in parentheses
without the scale factor. This leads to the terminology of i being called ‘conformal time’.
One may note that if we define » = Si.(x) we have dr? = (1 — kr?)dx? so an alternative way to write the
metric is
dr?
1 — kr?

This form is what is used in the appendix to develop the Einstein equations.
The other function a(7) appearing in the metric is called the cosmological scale factor. It is not deter-
mined by symmetry considerations; rather it is determined by Einstein’s field equations.

ds? = —c2dr? + a?(7) < + Tz(dQQ + sin? 9d¢)2)) . (60)
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4.2 The Friedmann equations

In 1922, Alexander Friedmann found the equations describing an expanding homogeneous and isotropic
universe.
He assumed the metric above and that the stress-energy tensor for the matter was that of an ‘ideal fluid’

pc?

Ta/B/ - (61)

oo Mygo

0 0
0 0 0
0 P 0
0 0 P

where the primes on the indices indicate that this is in physical coordinates erected in the vicinity of a
fundamental observer
As already discussed, in this tensor:

e the upper left element is the total energy density € = pc?

e and the lower-right sub-matrix is the diagonal stress tensor containing the isotropic pressure P
e three zeros in the left column are the momentum density,

e the three zeros in the top row are the energy flux density

e all these are as would be measured in the frame of a fundamental observer

e sometimes called ‘comoving observers’ as they are co-moving with the cosmological fluid in that they
see vanishing momentum density and energy flux in their frame of reference

Dynamical equations for a(7) and p(7) can be obtained from a combination of the Einstein field equations
(by computing the connection and hence the Einstein tensor G and equating it to 87xT) and the laws of
continuity of energy and momentum. As shown in appendix A, the resulting Friedmann equations are the
acceleration equation:

i = —(4n/3)G(p + 3P/c*)a (62)

where dot denotes derivative with respect to cosmic time 7, the energy equation:

a? = (87/3)Gpa® — *k (63)

and the matter continuity equation:

p=—3(a/a)(p+ P/c2). (64)

These all agree with the Newtonian cosmology equations if P = 0.

4.2.1 The Friedmann energy equation

Significant features of (63) are:

e it is (if multiplied by 1/2) identical in form to the Newtonian expression for conservation of energy
(kinetic energy + potential energy = constant) for an expanding spherical shell of radius a containing
mass M = (47 /3)Gpa’

e dividing by a? the left hand side is the observable H? so, augmented by a measurement of the density
p, this allows one to determine the radius of curvature ag and the curvature eigenvalue k

e the sign of the spatial curvature is determined by whether the kinetic energy is greater than, less than,
or equal to the gravitational energy

e the pressure P does not appear — so the spatial curvature is determined by p alone
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4.2.2 The matter continuity equation

From continuity equation (64) can be obtained from the time component of V - T = 0. With P = 0, this
has a solution p &< a=% and so (defining V = (47/3)a?) this then simply expresses conservation of mass:

d(pV)/dr =0 (65)
While for P # 0, and since dV = 3(da/a)V, the extra term implies
d(pV)/dr = —(P/c*)dV/dr (66)

which, on multiplying by ¢?, we recognise as the first law of thermodynamics

|dE = d(£V) = —PdV.| (67)

4.2.3 The acceleration equation

The energy and continuity equations are two 1st order equations. If we take the proper time derivative of
the first we get

2aii = (87 /3)G(pa® + 2paa) (68)
and if we use the second to eliminate p we get the 2nd order acceleration equation:
i = —(47/3)G(p + 3P/c*)a (69)

e which, for P = 0, is what Newton would have written down for an expanding sphere of dust
e but which, in general, contains an additional deceleration from the pressure

e sometimes expressed by saying ‘pressure gravitates in GR’

Note that the three equations for a2, p and & above are not independent, as any one of them can be obtained
from the other two.

It is important to realise that the presence of the pressure here is not the effect of e.g. the kinetic energy
of motion of particles in the case of a gas. Such contributions to the energy do gravitate, but are already
included in the density as pc? is the total energy density.

4.2.4 The ‘equation of state’

The energy and continuity equations (which, we have just seen, imply the acceleration equation) give us two
1st order equations for three unknown functions of time: a(7), p(7) and P(7).

To obtain solutions we must augment these with an ‘equation of state’ giving the pressure P = P(p).
This may be

° for pressureless matter (‘dust’)

— an important component at present

o | P = pc?/3|for radiation

— dynamically negligible now, but dominant in the past since it has p, o a™*
-3
Pm X @

as compared to

Observations that the expansion of the universe is speeding up suggest we need a third component: ‘dark
energy’ with negative pressure to give a > 0.
Our ignorance about its equation of state is encapsulated in an unknown function of time (or redshift)

w = P/pc? (70)

though a note on terminology is in order. An ‘equation of state’ (EoS) in thermodynamics is a relation
giving one thermodynamic variable in terms of 2 others (e.g. P = P(p,T)), and which may be adiabatic,
isothermal etc.In cosmology people use EoS rather loosely for an expression for P in terms of density alone,
and as just the ratio of pressure to density. This is either because the temperature is either assumed to be
solely a function of the density — as for thermal radiation that is expanding adiabatically — or because one is
not dealing with a thermodynamic system (e.g. quintessence or the inflaton) so temperature is not defined.
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4.2.5 Dark energy and the cosmological constant

The Friedmann equations were obtained without any cosmological constant term Ag on the left-hand side of
the Einstein equations. In non-expanding (primed) coordinates, such a term would have components Ag —
Adiag{—1,1,1,1}. That would be equivalent to having a source term T — (A/87x)diag{l,—1,—1,—1}
on the right-hand side. L.e. a positive energy density but a strong, and negative, pressure.

Py = —ppc? (71)

The corresponds to an equation of state parameter w = —1. This equation of state arises in inflation in
the early universe and also if the dark energy is provided by a scalar field (‘quintessence’) during late-time
inflation.

From the continuity equation, dark energy with w = —1 has p = constant and so would have become
negligible in the recent past, but will dominate in the future.

4.2.6 Why does pressure increase the deceleration of the universe?

The energy equation appears very Newtonian. The continuity equation can be understood as local con-
servation of energy with £ = Mc? from special relativity thrown in. The most surprising feature of the
Friedmann equations from this perspective is the appearance of pressure in the acceleration equation. Why
is it there?

One answer is that it pops out of Einstein’s equations, but that is not very satisfactory. Another view is
simply that it would be unreasonable for the energy equation to contain pressure, which forces pressure to
appear in the acceleration equation. It is important to understand that the pressure is really something we
can control at will. Imagine we have an expanding universe full of ‘dust’; gravitating matter with P = 0,
but the dust is really H-bombs, all primed to explode at some cosmic time. Thereafter we have P # 0.

While there is now pressure, there are no pressure gradients, thus there is no force acting on the matter.
If this were a finite sphere, there would be pressure gradients at the edge, but, at least initially, before any
shock waves from the edge can propagate to the interior, there are no forces acting, so the the velocity of
matter, and also the expansion rate, should be continuous. Hence the constant term in the energy should
not change. And the energy equation, as we have seen, gives the curvature radius of the universe in terms
of the energy density and the expansion rate. The energy density is not changed when the bombs go off. It
would not make any sense for the energy equation to contain a pressure term, as this would then require an
instantaneous change in the global curvature, and even the topology, of the universe.

S0, in this thought experiment, nothing much changes instantaneously when the pressure is switched
on, but, thereafter, the energy density evolves differently because of the presence of P in the continuity
equation. With the curvature constant k being fixed, that means there must be a change in the expansion
rate as compared to what would have been the case if the pressure had remained zero.

Another way to see how pressure gravitates in GR, without resorting to computing the Einstein equations
for the FLRW metric, is given in the appendix where we show, using weak-field gravity, how the pressure
enters into the geodesic deviation equation. This explains the presence of pressure in the acceleration
equation and, which amounts to essentially the same thing, in Raychaudhuri’s equation.

4.2.7 The expansion rate, critical density and the density parameters

™

with units of inverse time, and whose current value is measured to a few percent precision to be

The expansion rate is defined to be

Hy ~ 70km/sec/Mpc. (73)
The Friedmann equation can be expressed as
H? = (87/3)Gp — *k/a? (74)
from which we can infer that

k = sign(po — perit) (75)
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where the ‘critical density’ is

Peris = 3HE /871G (76)

which is the density the universe would have to have for the potential and kinetic terms in the Friedmann
equations to balance.

We often express densities in units of the present day critical density. So, for example, the density
parameter for the matter is defined to be

‘ Qmo = me/pcrit~ (77)

Observations indicate that Q2,9 ~ 0.3 (see below), so the amount of matter is about 30% of that required
to ‘close the universe’. If that were all there was we would conclude that the universe must have negative
(hyperbolic or saddle-like) spatial curvature since pg < perit, and that the current proper distance to an
object at a conformal distance equal to the curvature scale (x = 1) is

ap = cHy M1 = Qpo| /2 (78)

i.e. somewhat greater than the Hubble distance Ly = c¢/Hy ~ 4000Mpc.
However, as already mentioned, there is good reason to think that there is also a non-negligible dark
energy component with density parameter (25, most probably very close to 1 — Q9 and, in the past one

had to include radiation though its current density parameter is very small Qg ~ 1074,
It is usual to define Qo =1— > Qo

i=m,r,A

e i.e. whatever would be needed to close the universe after accounting for all the matter content

using the fact that py, o< a™3, pr o a™, pp o a® the Friedmann equation gives us the expansion rate when
scale factor of the universe was a:

H = Ho[Qmo(a/a0) ™% + Qro(afag) ™ + Qa + Quo(a/ag) ~%)/? (79)

or, defining the redshift z by

ap
| 4 ="
z u (80)

we can compute the expansion rate as a function of redshift as
H(z) = Ho[Qmo(1 + 2)° + Quo(1 + 2)* + Qa + Qo (1 + 2)°] /2. (81)

4.2.8 Solutions of the Friedmann equations

If we specify type of constituents — and thus how their densities vary as a function of the size of the universe
— then we can solve the Friedmann + continuity equation (or the acceleration equation) to get a(7) and
hence p(7) and P(7) also.

This requires, two boundary conditions: the present day density and expansion rate.

Unfortunately there are no analytic solutions with dark energy or pressure (except as limiting cases).

However, for a universe that contains only pressure free matter there is a parametric solution (the cycloid
— for a closed universe — and hyper-cycloid for an open universe)

a(n) = A(coshn — 1)

7(n) = B(sinhn — n) (82)

where A and B are constants and 7 is the conformal time, with the property that dn o< d7/a(7), and changes
in conformal ‘look-back time’ and conformal distance are related by dn = —dy. A family of such solutions
is shown in figure 14.

Unfortunately, if we include dark energy one needs to solve the equations numerically.

At early times things are much simpler, because at redshifts beyond a few we can neglect the dark energy
and € terms. Then

e in the matter dominated regime we then have power law solution
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Figure 14: Cycloidal and hyper-cycloidal solutions of the Friedmann equation. These are the same as the
solutions for a pebble fired upwards from a compact (Newtonian) mass. At very early times — when the
kinetic energy and potential energy are both very large in relation to their difference — the solution is a
power law a t2/3. The curves represent a sequence of increasing total energy.

- laox 7?3
— which can be shown, either by taking the 1 <« 1 limit of the hypercycloidal solution above,
— or, more usefully, by noting that

% for a power law expansion a o 77,

* the expansion rate goes like H = a/a =v/7 < a™7

% but, since H2 « p o< a™3, so H o< a~3/2, this requires v = 2/3

e and in the radiation dominated regime applying the argument above, but with p oc a™* we get H o
VP o< a?so~y=—1/2 and therefore

— a o /2

e we will discuss these more below

Another interesting solution emerges when the universe is strongly A-dominated, or dominated by a field
with P ~ —pc?, which, it seems, will happen in the not so distant future, and which, it is widely suspected,
happened in the distant past in the inflationary era that preceded the hot big bang.

For a A-dominated universe the universe expands exponentially with

‘ a(T) oc exp(HT) l (83)

e with H asymptotically constant
e while maintaining constant energy density

e and thus creating energy out of nothing, hence “inflation is the ultimate free lunch” (Guth)

4.3 Interpretation of observations in FRW models

The FLRW models preceded (just), and allowed interpretation of, Hubble’s observations. He was measuring
recession velocities inferred from the redshift and distances obtained from flux-densities of variable stars —
which he was using as ‘standard-candles’.

These models allow prediction of, in addition to flux-density, angular sizes of objects of known size — or
‘standard-rulers’ as a function of redshift.

Note that, to test the model, or determine the parameters of a model, we need to have at least two ways
of determining the distance to an astronomical object.
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Though it should be said that, at the modest distances he was observing, relativistic effects were negligible
and a Newtonian interpretation would have been adequate. But, oddly enough, Newtonian cosmology was
not well developed or understood at the time.

In FLRW models, light from distant objects is focused by the gravitational lensing effect of interven-
ing matter. This depends on how much mass there is (and the redshift depends on how the universe is
expanding).

This focussing is conventionally expressed in terms of ‘apparent distances’

o for flux density (or luminosity L), and

° for angular size

e both of which, in any specific cosmological model, are computable functions of redshift
these are the answers to the questions:

e ‘how for away would a object of known luminosity (size) have to be in an empty universe in order to
have the flux density (angular size) computed in the model from the metric’

while redshift depends on how much the universe has expanded since the light we see left the objects.
These apparent-distance vs. redshift relations Dy (z) and D,(z) can be used in two ways:

1. if we assume the cosmological density parameters are known we get the intrinsic properties from
observed ones

2. if we assume the intrinsic properties are known then we determine the cosmological parameters

4.3.1 The cosmological redshift - measurement

We defined the redshift above such that
142z =ap/a. (84)

The reason it is called the redshift is that it is directly observable as a shift in the wavelength of spectral
lines

| Aobs/Aem = 1+ 2| (85)

and observed photon energies scale inversely with 1+ z.
One way to prove this is to use the (covariant form of the) geodesic equation for the time component of
the 4-momentum pg, dpg/d\ = —%guyyop“p“. For a radial photon (0, ¢ = constant) this is

dpo/d\ = —59xx,0P*P* (86)

since gog is time independent.
Now the normalisation condition for the (null) 4-momentum is gy, (pX)? = —goo(p°)* = —¢"'pg so
p*¥ = —/=3¢%/g\po = —po/ac (negative since the photon is coming towards us). Since g,, = a?, its

derivative is = ¢ 19,a% = 2aa/c and so
XXx,0

dpo aa pd a a cdt
et e e e TS o e R— = == SR N 7
d\ ¢ a?c? poacp poac d\ A7)
SO g :
Po aa
™ e &

which means that pg, and hence also p' = ¢"’py, varies inversely with the scale factor.

Another way to understand this is by analogy with a standing wave in an expanding cavity (sce left
panel of figure 15).

One can also derive this by thinking about the Doppler shifts suffered by a photon bouncing repeatedly
off the assumed to be steadily receding walls of an expanding cavity.

Weaknesses of this argument are:

e is radiation — e.g. that from a distant transient source — behave in the same way as a standing wave
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Figure 15: The cosmological redshift can be understood by analogy with standing waves in a cavity (left) for
which the wavelength scales with the box size. A rigorous argument (due to Peebles - at right) is to consider
the wavelength change as the product of a lot of infinitesimal shifts between a sequence of fundamental
observers that the photon passes on its path.

di 5 4 Figure 16: Peebles’ argument for the
— =— =—Xady = ady cosmological redshift. We consider two
A c a . ;
) neighbouring fundamental observers, one
f.iﬁ za_dr = ady of whom sends a photon to the other.
a a These observers are in free-fall, so gravity
di  da is ‘transformed away’ (locally at least). So
——=—=lxa the change in the frequency of the pho-
y) a g Y
ton is just the 1st order Doppler shift.

¢ = constant It follows that the fractional change in
the wavelength is equal to the fractional
change in their separation and, by exten-
sion, the fractional change in the scale fac-
tor.

e in reality there are no reflecting walls

e and surely the gravitational redshift has to be involved at some level

e and has been challenged (see papers on ‘redshift-remapping’)

e a rigorous way to prove this is illustrated in the centre panel of figure 15. One imagines a finite
wavelength change Aops/Aem as being the product of a set of infinitesimal shifts.
— by virtue of the fact that these observers are in free fall
— and that in a locally freely falling frame the effect of gravity is ‘transformed away’

— one can be confident that the only effect is the 1st order Doppler effect 1 4+ 6A/A = 1+ dv/c =
L+ Héx/c = 1+ HéT where H = a/a is the expansion rate and &t is the time elapsed as the
photon makes its way between the two neighbouring observers

— but, since HoT = (a/a)0T = da/a, it follows that

- |6A/A=da/a

— which we can integrate up to get Aobs/Aem = Gobs/@em

— this would appear to be a serious challenge to proponents of ‘redshift-remapping’
e with a high resolution spectrograph, redshifts of galaxies can be measured with great precision

e and even with ‘broad-band colours’ one can obtain quite good accuracy (though one needs to beware
of ‘outliers’)

e but these require that there be features in the spectrum whose ‘rest-frame’ wavelength is known
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e a counter-example is the cosmic background radiation (CMB)

— this has a thermal, or ‘black-body’, spectrum

— which has the property that in an expanding universe it remains thermal even in the absence of
interaction of matter

— so there is nothing about the CMB that tells us at what redshift it was last interacting with
matter

— but we know that this was at z ~ 1100 from Saha’s equation

4.3.2 Conformal distance-redshift relation

Having established how the redshift can be measured, we now want to relate this to conformal distance. Not
that this is our ultimate goal — which is to relate redshift to apparent (luminosity and angular diameter)
distances.

From the metric, for light, which follows null trajectories: ds = 0, propagating radially from the origin
(i.e. with 6, ¢ fixed, so dff = d¢ = 0) we have

ds” = —Pdr® + a(r)(dx* +Sk() (@6° -+ sin’ 0d?) (89)

dx=—cdr/a

and a useful chain of relations follows from the differential redshift:

W:da+@:%m4:—%m:—%Mh:—%mh:%H@ (90)

1+z=ap/a cdr=—ady

from which we can extract J
2
dr — 91
= AT A 1)

which can be integrated to get the ‘lookback time’, or the age of the universe when the photons we see were

emitted, and

apdyx = % (92)

Integrating the latter we obtain the present epoch proper distance to redshift z

z
dz

apx(z) =c i) (93)

0

or, using the expression obtained above for H(z)
x(2) z
aox () /d ‘3/ 1z (94)
= @, = —
0% 00 X Ho ) [Omo1+ 22 + Qo1+ )7+ O+ Quo 1+ 277

which is a nasty integral, but something one can readily evaluate numerically given as input the values of
the density parameters.

It should be noted that the integral here converges if there is any matter or radiation in the universe. In
a completely empty universe (so Qo = 1) the conformal distance diverges logarithmically and in a universe
with only dark energy and Qo = 0 the divergence is stronger. But these are not realistic options.

— The Einstein-de Sitter model

As an illustrative example — albeit a not an entirely realistic one — for the so-called ‘Einstein-de Sitter’
model: Q,, = 1, all others zero, we obtain

aox(2) = (2¢/Ho)[1 = (14 2)7"/7] (95)

regarding which we note the following:
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e in this spatially flat model (2 = 0), as in any spatially flat model, the present day scale factor ag
(being the radius of curvature) is formally infinite, while x(z) is formally zero, but the product agy is
finite

the proper distance to infinite redshift — the horizon — is finite

the distance grows linearly at low-z: aox(z < 1) ~ cz/H

but this growth tapers off:

— by z = 3 we are half-way to the horizon

— by 2z ~ 1000 (the redshift at which the photons of the CMB were last scattered) we are about
97% of the way to the horizon (see figure 17)

Figure 17: An equatorial slice through our universe showing the
surfaces of constant redshift in a plot where radius is conformal
distance x. Galaxies can be seen out to z ~ 10, which is a good
fraction of the volume within the entire region we can observer.
Gelies Note that there is no ‘edge’ to the universe in this model. The
density of matter, galaxies etc. is assumed to extend without
limit — though we will only ever see galaxies below the redshift
] at which they formed (thought to be around z ~ 20). The
_ horizon — the dashed circle — is simply the limit imposed by
a7 the fact that there is a maximum conformal distance that any
information can have propagated in the age of the universe. The
arrows labelled ‘Horizon’ in this plot indicate the horizon size
back at z ~ 1000. Parts of the sky with separation bigger than
this were not, in the big-bang model, in causal contact with one-
another when the photons were released, yet they have almost
identical temperatures.

e

\t
"—Harizon

We can use (

refeq:ConformalDistanceFromRedshift) to compute the distance agx(z) — at the present epoch — to a source
with some measured redshift (assuming we know Hy and the density parameters). This is often quoted
in news articles (usually in light years), but it is not very useful. It is the integral of the distance on
the hypersurface 7 = 7, but the photons came to us on our past light cone. More useful are the apparent
distances that depend also on the cosmological parameters and which tell us, assuming we know the intrinsic
size or luminosity of an object, how far away would it have to be — in a fictitious empty non-expanding
universe — to have the observed properties.

4.3.3 The angular diameter distance

Let’s suppose we are observing a galaxy or some other extended object at redshift ze, and it subtends an
angle on the sky df

e how can we infer from this the physical linear size of the galaxy dI?

to do this, we consider two emission events that happened at the same cosmic time, so dr = 0, and at the
same distance from us, so dxy = 0 an let them lie in the equatorial plane, so d¢ = 0.
The metric then tells us that the proper size of the galaxy is dl = ds, where

ds* = —c*dr® + a(7)*(cx” + S (x)(d6” + sin’ Ocd”) (96)

50 dl = a(zem) Sk(X(zem))db.
The factor multiplying df is, by definition, the angular diameter distance, so

| Da(2) = a(7(2))Sk(x(2))| (97)
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since, in empty space, an object of proper size dl subtends an angle df = dl/D.
If we assume a spatially flat universe (k = 0), which is believed to be a good approximation in reality,
we have Si(x) = x so the angular diameter distance is Dy(2) = @emX (Zem) = (a0/(1 + 2))x(2em) OF

Da(2) = 1;/;(2)' (%)
0

This is a very powerful result. It turns out there is a rather accurate ‘standard ruler’ known as the ‘baryon
acoustic oscillation’ (or BAO) scale, which is a feature imprinted in the spatial distribution of galaxies and
which enables a measure of D,(z) and hence a powerful test of cosmology (see figure 19). This reinforces
the evidence for dark energy and helps determine the cosmological parameters.
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Figure 18: Angular diameter distance (left) and luminosity distance (right) as a function of redshift for
various cosmological models.

e L E L L B Figure 19: Baryon acoustic oscillations. In the
1 4 conventional model for the origin of cosmologi-
cal structure, the ‘seeds’ of structure were laid
down during inflation in the very early universe,
with a nearly scale-invariant spectrum. During
the period immediately before the plasma reion-
ized these triggered sound waves in the plasma-
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0.3 - radiation fluid. This imprinted a feature in the
= spectrum of density fluctuations that emerged
= and later developed into fluctuations in the ob-

| served large-scale structure traced by galaxies.

0.1
. The feature is rather weak, but it is highly valu-

able as its scale is predicted from CMB obser-
0.04 I 1 vations (it is essentially the ‘sound-horizon’; the
product of the sound speed and the age of the
universe at the decoupling epoch). Massive red-
shift surveys were able to measure this feature

0.02

0.00 -
- | | | by means of the ‘two-point’ function character-
=Rl e . 15D ising the galaxy distribution at left. This pro-
Comoving Separation (h-' Mpc) vides a powerful constraint on the cosmological
model.
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4.3.4 The luminosity distance

e An analogous apparent distance Dy, can be defined that uses flux density F of ‘standard candles’ of
luminosity L

— flat space: F = L/4rD? = |Dp(z) =+/L/4nF

e to calculate Dy (z) we consider a source located at y = 0

e and co-moving observers on a spherical shell at distance x (see figure 20)

proper area ) L . .
of sphere: Figure 20: To calculate the luminosity distance we consider a

= adSXy) [dQ source at the origin of our coordinate system y = 0 and we
= 47a2S2(p) consider a sphere at distance x covered with observers, each of
whom would observe the source to have the same flux density
and redshift. If the source emits N photons of frequency v per
period 7 = v~ (so the proper luminosity is L = Nhv?) then
conservation of photons implies that there must be N photons
of energy hr/(1 + z) crossing the sphere per red-shifted period
7 = (14+2)v~1. The energy flux density is therefore F = (L/(1+
telescope  2)2)/A = L/4ma2Sk(x)*(1 + 2)? and so the luminosity distance

apertures is Dr,(z) = \/W = apSk(x(2))(1 + 2).

e let the source emit N photons of frequency vem per (rest-frame) period Tem = 1/Vem

e that means Ley, = Nhvem /Tom = Nhugm

e conservation of photons implies that N photons cross the shell per red-shifted period 7ops = (14 2)Tem
e and these photons have energy: hvgps = hvem /(1 + 2)

e so the energy flur (energy per unit time) across the surface is Lobs = Nhobs/Tobs = th/gbs or

= Lobs = Lem/(1 + 2)2

e but area is A = 47adSE(x) = 47 ((1 + 2)dem)*SZ(X)

e so the energy flur density I (energy per unit time per unit area) is F' = Lops/A = (1+2) ™4 /4752 (x)a(Tem)?
and hence

- Dy, = aemSk(Xem)(l =+ 2)2

e or, comparing with the angular diameter distance, D, = GemSk(Xem) we have

— DL:Da(l-i—Z)Q

— which is called Etherington’s reciprocity relation

e aside:

— if the source has size dl then it subtends a solid angle dQ ~ dI?/D?

— while the intensity is [ ~ F/dQ ~ (L/D?)/d

— this, for a given object (fixed L, dl) the surface brightness must vary with redshift as I o« D2/D?
(1+2)*

— so the bolometric intensity (or surface brightness) suffers a (142)~* ‘surface-brightness dimming’

— this is consistent with Liouville’s theorem, which says I,,/v3 = constant along any ray since if we
integrate this we get a bolometric surface brightness I = [ dvl, o o (14 2)4

e taking the logarithm of Dy, /10pc (and multiplying by 5) we get the predicted distance modulus m — M
which can be compared with data for 1a SN (see figure 21)
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4.3.5 The deceleration parameter

Distance Modulus (m-M)

=0.0

0.3,Q

(m-M) -

(Mg,

e FRW models predict linear relation D « z—i.e. Hubble’s law — for z < 1

— all observers perceive themselves to be at the ‘centre of the universe’

— analogous to ants on an expanding balloon

— key observable is ‘Hubble parameter’ Hy — essentially the inverse of the age of the universe

e going to small but finite z we start to probe departures from linearity

— at lowest order this is parameterised by the deceleration parameter

* q = (—ad/d2)0

— This led Alan Sandage, who studied with Hubble, to famously state that ‘cosmology is the search

for two numbers’, these being

1. how fast the universe is expanding (Hy)

2. and how fast that expansion is slowing down (qo)

e in Sandage’s time, even the first was quite uncertain and the second largely a matter of speculation

e this changed at the end of the ’90s when two groups (led by Saul Perlmutter and by Brian Schmidt)
obtained the famous ‘type 1a supernova Hubble diagram’ shown in figure 21

— this leap forward was the result of careful ‘standardisation’ of the ‘candles’ in question

— such supernovae taken as whole actually having a range of intrinsic luminosities

— but that variation, it turns out, is a function of colour and of the duration of the supernova and

so can be corrected for

T T
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Figure 21: Hubble diagram for type la supernovae (con-
tains data shown earlier, but extended here to higher red-
shift sources). The background to these Nobel prize win-
ning observations is the following: By the ’80s there was
strong evidence that there was significant non-baryonic
dark matter: much more than the roughly 5% of criti-
cal density for normal matter allowed by big-bang nucle-
osynthesis. At the same time, the idea that inflation pre-
dicted that the universe should have closure density and
be spatially flat had firmly taken hold. For a while the
CDM model with Qcpy 2~ 1 seemed the natural solution.
But there were various problems: the predicted age of the
universe was uncomfortably short; the dynamical evidence
was for Q, ~ 0.3, not 1; and evolution of galaxy clusters
seemed slower than predicted. At the same time obser-
vations of the CMB were very hard to reconcile with an
open universe with €, =~ 0.3 as the negative curvature
would make the predicted scale of the ripples too small.
Adding A to the cosmic mix, while repugnant, was becom-
ing widely promoted. The clincher came with the high-z
SN data that indicated that the universe was accelerating.

e Figure 21 shows that the supernovae at high-z have a greater apparent distance than predicted in
cosmological models containing only normal matter and the observed distance is better fit by models
with a cosmological constant A (or with ‘dark energy’) with Qp ~ 0.7,

— the present-epoch deceleration parameter in these models is negative:
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— the dark energy is causing the expansion rate to increase with time

— l.e. we inhabit an accelerating universe
e why acceleration causes an increase in apparent distance can be understood as follows

— all distances (comoving/conformal, luminosity, angular diameter) involve x(z) = (c/ag) [ dz/H|(z)

— and in flat models (a class to which we believe our universe closely approximates) they are simply
proportional to this times factors of 1 + 2

— imagine we compare two models

1. a ‘fiducial’ model with some expansion history H;(z)

2. a ‘relatively accelerating’ model with idential expansion history for z below some redshift z,
but Ha(z) < Hi(z) for z > z,

— evidently, the relatively accelerating model will have greater apparent distances for sources at
Z > Zy

4.4 The closed FLRW models

The closed model is finite, yet has no boundary. However, at least if we restrict attention to zero-pressure
equation of state, we are free to take only a finite part of the total solution X < Xmax. This is a spherically
symmetric mass configuration, and so should match onto the Schwarzschild solution for a point mass m, for
which the space-time metric is (in units such that ¢ = G = 1)

2 2m\ 7!
—dr? = <1 - —m> dt? + (1 L Ln) dr? + r2(d6? + sin? 0dg?). (99)

r r
Comparing the angular part of the metric it is apparent that the Schwarzschild radial coordinate r and the
FLRW ‘development angle’ x are related by » = asinx. Now a particle at the edge of the FLRW model can
equally be considered to be a radially moving test particle in the Schwarzschild geometry. We found that
in Schwarzschild geometry, the normalisation of the 4-velocity for a radially moving particle implies

dr\* _2G
(—T> = 2™ | constant. (100)
dr 7
Compare this with the energy equation
da\?  2GM
(a) = —— + constant (101)
dr a

where we have defined the mass parameter M = 4wpa3/3. With r = a sin y this implies that the Schwarzschild
mass parameter is
m = M sin® y. (102)

This is interesting. For x < 1, the mass increases as x* as expected. However, the mass is maximized
for a model with a development angle of 7/2, or half of the complete closed model. If we take a larger
development angle, and therefore include more proper-mass, the Schwarzschild mass parameter decreases.
To the outside world, this positive addition of proper mass has negative total energy. This means that the
negative gravitational potential energy outweighs the rest-mass energy. The gravitating mass shrinks to
zero as X — m. Bvidently a nearly complete closed model with y = 7 — ¢ looks, to the outside world, like a
very low mass, that of a much smaller closed model section with y = e.

The total energy of a complete closed universe is therefore zero. Zel’dovich, and many others subse-
quently, have argued that this is therefore a natural choice of world model if, for instance, one imagines that
the Universe is created by some kind of quantum mechanical tunnelling event. To be consistent with the
apparent flatness of the Universe today one would need to assume that the curvature scale has been inflated
to be much larger than the present apparent horizon size.

It is interesting to compare the external gravitational mass with the total proper mass. The volume
element of the parallelepiped with legs dy, dO, d¢ is

d*z = (adx) x (asinxdf) x (asin y sinfde), (103)
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Figure 22: On the left, the proper-mass and gravitational mass for a partial closed FRW cosmology sur-
rounded by Schwarzschild geometry are plotted against the development angle w = x. On the right is shown
an embedding diagram. The interior is part of a sphere and the outside is like a trumpet horn. Here the
‘development angle’ x is less than /2. For x > 7/2 we have more than half of the total FLRW model and
the radius r is decreasing with increasing x. It is still possible to match on to an exterior Schwarzschild
geometry, but the embedding diagram then has a ‘throat’.

Figure 23: The fact that a — po-
tentially large — closed universe
can be matched onto an exter-
nal universe is the physics be-
hind the cartoon shown at the
left which is meant to indicate
how in the early universe a mul-
titude of universes could ‘her-
niate’ from a parent universe —
or from each other in Andrei-
Linde’s ‘chaotic inflation” mod-
els.

so the total mass interior to x is

X
in 2
Mproper = pa3/dx sin2x/d9 sin@/d¢ — gM [X - %2(—} (104)
0

The gravitational mass (102) and proper mass (104) are shown on the left in figure 22.

One can make an embedding diagram for this combined FLRW + Schwarzschild space-time. This is
shown pm the right in figure 22.

These partial closed FRW models start from a singularity of infinite density and then expand, passing
through the Schwarzschild radius r = 2Gm/c?. With r = asiny, m = Msin®x, and a = M(1 — cosn),
particles on the exterior cross the Schwarzschild radius at conformal time 1 when 1 — cosn = 2sin? .
For y < 1, this occurs when 1 = 2x. Such solutions spend the great majority of their time outside the
Schwarzschild radius. For the case y = w/2 — i.e. half of the complete solution — the exterior particles
just reach the Schwarzschild radius. It may seem strange that the matter in these models can expand from
within the Schwarzschild radius, but this is indeed the case. If one considers only the collapsing phase of
these models then one has the classic model for black-hole formation as developed by Oppenheimer and
Snyder. The spherical mass collapses to a point, and photons leaving the surface can only escape to infinity
if they embark on their journey while the radius exceeds the Schwarzschild radius. The expanding phase
of these models is just the time reverse of such models; what we have is a ‘white-hole’ solution The initial
singularity is visible to the outside world (eventually) just as photons from the outside can fall in to the
final singularity.
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A The Friedmann equation from the Einstein field equation

It is convenient to use the (7,r,6, ¢) metric in the form

dr?
1— kr?

from which we find that the non-vanishing Christoffel symbols are

ds® = —dr? + a(r)? < +7*(d6” + sin® 0d¢2)) (105)

Tk = 2ij Mog = §6, [y = 12
Iog = —r(1 — kr?) I7sp = —7(1 — kr?)sin? (106)
I, = % I‘9¢¢ =sinf cos F¢’9¢ =coté
The non-vanishing components of the Ricci tensor are then found from
R/LU = Rauau (107)
and
Ra#ﬁv = Faw,ﬁ = Fauﬁ,v + Favﬁrvw - Fawrvuﬂ (108)
to be
RTT = _3%
a
R,y = (ad + 2a® + 2k)/(1 — kr?) (109)
2

Rgo = (ad + 24* + 2k)r
Ry = (ai + 24> + 2k)r? sin® ¢
from which the Ricei scalar is
R=g"R,, =6(ad + a*> +k)/a’. (110)
The stress energy tensor for a homogeneous universe containing dust or radiation can be taken to be that
of a perfect fluid
Tw = (p+ P)UFU” + g*'P (111)

where the 4-velocity is that of a ‘fundamental observer’ who is moving with the fluid and has 4-velocity
U" = (1,0,0,0) (this is properly normalised as g,, = —1).
The Einstein field equations can be written as

Ry = 81G(Tyw — 39 T) (112)
The 77 component of which is the acceleration equation
drG
i= —T‘T(p+3p)a (113)

which is the same as what we found for the geodesic deviation equation in the centre of a star.
Any one of the spatial equations gives adi+ 2a*+ 2k = 47G(p — P) which, with the acceleration equation
gives the energy equation

a? = %—Gpa? — k. (114)

which are the Friedmann equations.
Differentiating the latter and combining with the former gives the continuity equation

p=-3%+P) (115)

which can also be obtained as the ji = 7 component of the energy momentum conservation law T"*.,, = 0
and is, in essence, the 1st law of thermodynamics as it says that the rate at which a volume element is losing
mass-energy is equal to the PdV work it is doing in the process of expansion.

One could work backwards from the latter, using the acceleration equation to obtain the energy equation.
But while that would tell you that a? — (87G/3)pa? is constant it would not pin down the value of k. One
can, however, appeal to the Milne model, which is the limiting case of the FRW models as p — 0 and for
which & = —1 and a = 7 to make the connection between the curvature constant and the (minus) sign of
the ‘total energy’ a? — (87G/3)pa?.
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B The local flatness theorem

If we make a 2nd order Taylor series expansion:

¥

2% (2%) = AY ya® + %—Aa/aﬁmamﬂ (116)

where Ao‘/ag = ma,,ag(fo), then the infinitesimal primed-frame displacement

/

dz® = 2% (2% + dz®) — 2 (a%) (117)

corresponding to an un-primed dz® is

dz® = (AY o + A 4 32P)dz® (118)
so we have a linear transformation, as before, but one where the matrix effecting the transformation depends
on position.

In order to express the line element in terms of the primed differentials we would like to turn this around
and write the do® (that appears in ds?) as some matrix times dz®". To do this, we first multiply by A7, to
obtain

A gdz® = (6] + A A 4paP)dz® (119)

and then observe that, at linear order in z?, the inverse of the matrix M7, = 64 + A"Ya/Ao‘/agmﬁ appearing
on the right is (M~1)%y = 6 — Aaa/Ao‘/,yng. So, multiplying the above by this gives the un-primed in
terms of primed differential displacement as

dx® = (53 — Aaa/Aa,,yﬁx’B 4 .. .)A’Y’u/dfﬁ‘/. (120)

And in terms of this, with judicious choice of dummy variables, we can write the line element ds® =
gagdx“dxﬁ as

9ap(T) dz® dxP

4% = (Gap + ga127) (05 = A0 AV o2 ) Myuda (85 — APp A" ra™ ) A e (121)
= A8 e A (g + 57 { Gy = 9upD A 1y = gup Ao A | 4. 1

Thus if, given the curvilinear frame metric components g,,, and their derivatives g,,s at o, we can find
a set of transformation coefficients A%’ uv that make the quantity in parentheses {...} vanish then we will
not only have g,/ = d,4,» at o but its derivatives g,/ will vanish there also.

But we know how to solve {...} = 0. If we define

/ oxP 52z
B, = \B _ o
%5 &2 APl 55 = S (122)
in terms of which A”‘,w = Aalgl“ﬂm,, then the equation we need to solve is
Guv,s — Fﬁmyguﬁ = Fﬁu'yguﬁ = 0. (123)

But we see that (122) is none other than the formula for the Christoffel symbols, and (123) is the statement
that the covariant derivative of g vanishes: g,,.s = 0. And the explicit solution for the Christoffels in terms
of the metric (rather than in terms of the transformation matrices) is, as usual,
F'B/w = %gb’v (G + Gypw = Guviy)- (124)
This is what is meant by local flatness and what we have shown above is often called the local flatness
theorem. Close to some point Zy — which was arbitrary, we could have chosen any point as the origin — we can
always find primed frame coordinates — in fact a family of such frames, as they can be rotated with respect
to each other — such that the metric is exactly Euclidean at Zp and where any corrections are at most of
second order in distance from #y. This has the implication that, if we find the equations of motion of a curve

of extremal length — i.e. a curve for which § [ dAL(z®, %) = 0 with L(2®,3%) = \/—ga/ﬁ/(ma/)fva'fcﬁl and
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where % = dz® /d\ and the parameter A is chosen to be ‘affine’, so it measures distance along the path —
then close to & the ‘generalised force’ dL/dz" = -5 galﬁfﬁx(a:a')j:a/{vﬁ/ /L vanishes, and the Euler-Lagrange
equations are #7 = 0; the equation of a straight path in Euclidean space.

At no point in the above did we invoke any fictitious, perfectly flat tangent space. The primed coordinate
system is only locally flat; there are non-vanishing second and higher order derivatives of the metric. We
have shown how, given the metric measured in some arbitrary coordinate system, we can find the coefficients
Aa/m of a quadratic transformation (116) that makes the 1st derivatives of the metric in the new frame
vanish. As we will shortly show, this cannot, in general, be extended to the 2nd derivatives of the primed
frame metric. The reason for this is very simple; there are not enough parameters in a cubic transformation
to fix all of the 2nd derivates of the primed frame metric.

C Milne coordinates

Rindler space-time is Minkowski space as viewed from a coordinate system with spatial coordinates tied
to accelerated observers. The lines of constant X-coordinate were lines of fixed proper distance from the
origin of Minkowski space and lines of constant 7' coordinate were orthogonal to these and were actually
geodesics (straight lines) in Minkowski space. This provided a foliation of space-time, but only contained
those regions with space-like separation from the origin.

An alternative, and mathematically very similar, coordinate system is that proposed by Milne in 1933 [7]
as way to help visualise and understand the geometry of Friedmann-Lemaitre-Robertson-Walker (FLRW)
cosmological models. This is again Minkowski space-time, but viewed from the perspective of a set of
expanding observers; specifically a family of inertial observers who emerge from an explosion at Zy — (cto, Xo)
— which is arbitrary, and which we take, for simplicity, to be the origin — with all velocities v with |v| < c.
This is illustrated in figure 24. In the Milne model events on a surface of constant time coordinate are
at constant proper time from the origin. And lines orthogonal to these — the particle trajectories — are
geodesics. This coordinate system foliates Minkowski space, but only contains the region in which events
have a time-like separation from the origin. It is therefore complementary to Rindler space-time as it covers
the region of space-time that was not covered by the Rindler wedge.

Observers and photon paths in the Milne Model

Figure 24: Milne’s cosmologi-
cal model is constructed by con-
sidering an explosion at some
point in Minkowski space-time
from which massless particles

Yawyyy emerge with all velocities less

: / than the speed of light. The
, 4 metric is then written in coordi-
/ nates where time is proper time

since the big bang — which, be-

cause of time dilation is a hy-

A3-surface of constant 1,01 16]a — and the spatial radial
proper time since the . K .

explosion coordinate y is a function of ve-

\\ /4 “ e 3 locity (so particles maintain con-

\\237 eometry of these 3-

\\ I/ surlsesiis hipenbolic stant x, 0, & ¢). The result is

. . 7
HlikOwSkiSpRESEmS formally identical to the FLRW
Same as open FRW models ot ric (??)'
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C.1 The Milne metric

The time coordinate is taken to be the proper time from the big-bang and is denoted by 7. The hypersurfaces
of constant proper time 7 are, like the paths of Rindler observers, hyperbolae, but now

At? — x| = 272 (125)
and the trajectories of the particles can be written parametrically as

ct = ¢t cosh x (126)
x = xcr sinh

where x, in terms of which x = |x| and x = x/x, labels the particle. Since cosh? ¥ — sinh? y = 1, this
clearly satisfies (125) and, along a world-line (constant x), c?dt? — |dx|* = c2d7? also. The velocity of a
particle (also constant since they are inertial) is

d
v = E)Z( — ci tanh y (127)
SO
x = tanh™!|v|/e. (128)

Writing C' = cosh x and S = sinh x, the differentials cdt and dx are, from (125),

dt = Cdt + Stdy

) ) (129)
dx = ex(Sdr + Ctdx) + ctSdx

squaring these, and noting that x, being a vector of fixed length, has x - dx = 0, gives the line element (i.e.
the proper separation of two infinitesimally separated events)

ds? = —c?dt? + |dx|* = —c2dr? + (er)?(dx® + sinh? x|dx|?) (130)

or, using polar coordinates, so x = (sin 6 cos ¢, sin 0 sin ¢, cos ), and defining a(7) = ¢7

ds® = —c2dr? + a(7)?(dx* + sinh? x(df? + sin? 0d¢?)). {131}

The is the line element in Milne coordinates from which we can read off the components of the metric
in Milne coordinates, defined, as usual, such that ds? = gaﬁdxadazﬁ. With 22 = (7, %,0,¢) it is

Jap = diag(—c?,a?, a® sinh? x, a? sinh? x sin? 6). (132)

It is complicated, and the hypersurfaces of constant 7 actually have negative curvature?. But one must keep
in mind that it is just Minkowski space-time, but written in a coordinate system with spatial coordinates
tied to a family of expanding observers . It is identical in form to the open FLRW metric, where the scale
factor is a(7) = c7 in the limit that the density of matter p is such that Gp < (@/a)?. In such models the
observers are called comoving observers as they are expanding with the matter; the flux density of matter
they would measure vanishes. But here there is no matter, so they aren’t expanding with anything.

The model as developed here is somewhat different from the Rindler model developed above in that
there we considered observers accelerating only in the x-direction. We chose that option as we wanted to
obtain the metric of space-time in a rocket. In Rindler’s original formulation, the observers are accelerating
radially from the origin. This is readily analysed by making the X-coordinate in (??) a 3-vector X in a
manner analogous to the coordinate x in (126) as we will show later.

4This can be seen by looking at a circle in the equatorial plane sin? @ = 1. This has radial length r = J[ds) =a [dx=ax,
but circumference [ds, = asinhy [d¢ = 2masinhx ~ 27r(1 + x?/6) which is the hallmark of negative curvature. This was
for a circle drawn around the origin, but the same is true regardless of location of the centre.
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C.2 Expanding radiation in a 1-dimensional Milne model

Maxwell’s equations, as well as other field equations like the Klein-Grdon equation, when written in cos-
mological coordinates, contain a damping term, which seems to sap energy from fluctuations in the field,
giving rise to redshifting of the energy density of e.g. the cosmic microwave background.

This term is often said to arise because of the coupling of the EM — or other — field to the gravitational
field of an expanding universe. But this phenomenon appears also in the Milne model — which is just
Minkowski space — in which there is no gravity and we know that energy is conserved. The resolution
of this apparent paradox is that the solutions of these wave equations — wave-like solutions with comoving
wavenumber k constant, and therefore with physical wavelength increasing with time and energy red-shifting
— must also be solutions of the field equations in the original non-expanding coordinates.

To see this graphically, consider a coordinate system that is expanding in the manner of the Milne model,
but only in one dimension (say the z-direction). If we make the transformation from (ct, x,y, ) coordinates
to (er(z,t), x(x,t),y, 2) where c?>72 = ¢?*t? — 22 — so 7 measures proper time since the explosion — and where
x = tanh™*(z/ct) then the metric is ds? = —c2dr? + >r2dx? + dy? + dz* and the field equation for a field
that is only a function of 7 and y is simply

o+ d/m—¢" )T+ 1Pp =0 (133)

where now dot denotes d/dr and prime denotes d/dx and where we see that there is again a ‘Hubble damping
term’ — now H7 since a = c¢7, so H = a/a = 1/7 — and which is the analogue of (??) to the case that the
expansion is only in one direction.

Let’s consider, for simplicity, waves of very high spatial frequency puA < 1, the wave-equation becomes
effectively massless (1 = 0) and, in the original Minkowski coordinates, is

[
29— " =0. (134)

This allows d’Alembertian solutions, ¢ = fy(z — ct) + f_(z + ct) where fy and f_ are arbitrary functions.
Consider the super-position of two oppositely propagating logarithmic chirp waves:

¢(z,t) = cos(k In(ct + z)) + cos(k In(ct — x)) (135)

which are illustrated in figure 25.

Figure 25: Expanding radia-
tion in a 1-dimensional version
of Milne’s model. This shows
a solution of Maxwell’s equa-
tions in Minkowski coordinates.
It is the sum of two oppo-
sitely propagating semi-infinite
‘logarithmic-chirps’. It is at the
same time a ‘standing wave’ so-
lution of Maxwell’s equations
written in expanding coordi-
nates. Milne observers would
say that the energy flux den-
sity in their frame vanishes, and
they would find the energy den-
sity of the radiation decreasing.
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Using cos A + cos B = 2 cos((A + B)/2) cos((A — B)/2) this is equivalent to

é(x,t) = 2cos(k[ln(ct + z) + In(ct — x)]/2) cos(k[In(ct + ) — In(ct — x)]/2)
s(mln ct+:c)(ct—a;)) Cos(ﬁln \/(ct—i-x)/(ct—a:))
08 (/1 In/c?t? — :z:Q) cos (/{ In v/(cosh x + sin x)/(cosh x — sin X))

os( In(e7)) cos(rx)

(136)

I

Il
D N

and differentiating this shows that it is a solution of (133) (with pu = 0).

If there were a family of Milne observers — expanding inertially from an initial explosion at the ‘focal
point’ — where the chirps first overlap they would find that the energy density of the radiation is decreasing
as £ oc 1/t2. They would measure zero energy flux density, but they would find that the spatial divergence
of the flux density is positive (consistent, in the equation of continuity of energy, with the decreasing energy
density). So this is an expanding ‘1-dimensional fire-ball’ of radiation in which the radiation is everywhere
redshifting and apparently losing energy. But the decrease of energy density is not being caused by any
coupling to anything; and certainly not to the ‘gravitational field of the expanding universe’. It is important
to realise that the only thing that is expanding here — indeed the only thing that exists — is the radiation
itself.

D Why pressure gravitates in GR — from weak-field theory

When developing the Newtonian-limit in weak-field gravity, it is usual to impose the condition that the
trace-reversed metric perturbations be divergence free condition huy’y = 0. One then finds that the solution

of the resulting field equations, for a static, pressure-free source T}, = p(x)025258 was hy, = —4P(x )5268,
which obeys the gauge condition, and, when trace unreversed, gives h,, = —2®(x)d..
It is interesting to turn this around and ask, if we assume hy,, = —2® (&), —i.e. that it remain diagonal,

but we drop the condition that the potential be static — what matter source this would correspond to. The
result is given by T = (87k)"!G with the components of the Einstein tensor given, in a general weakly
perturbed coordinate system, from (?7) as

Gag = 2[0003P 1" + Napdadg®@™ — 5000 gH — 630,P o]

137
= 2[0005® " + Nap®® — 63® 50 — 55® o] (130
from which we find
Gy = 2V%d
Goi = Gip =271, (138)

Gij — 20~2(5ij(.i>

so, if we demand that ® = 0 at some time, the metric we have postulated describes the gravitational field
of matter with non-zero, but isotropic, pressure (G;; = 8mkPd;;) and we would then have a metric looking
just like the Newtonian limit metric, but with a non-zero time variation of the potential being driven by
the pressure of the matter. This is known in cosmology as the longitudinal gauge. 1t isn’t really so much a
choice of gauge as a restriction on the metric. Nonetheless, it allows one to describe somewhat more general
matter than just pressure free ‘dust’.

To illustrate this, consider the case of spatially uniform density Tpg = pc? and pressure T;; = PJ;j, in
which case we must have

V20 = 4nGp/c?

$,;=0 (139)
® = 4nGP/c?
which admit the solution or G
o= %(mxi? +3P12) (140)
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giving the metric expressed through the line element
ds® = —(1 + 28(|x|, t))c2dt? + (1 — 28(|x|, ) (dz® + dy?® + dz?) (141)
or, if we preferred, in terms of polar spatial coordinates.
ds® = —(1+28(r, t))c2dt* + (1 — 28(r, 1)) (dr? + 1°(d6> + sin® 6d¢?)). (142)

This metric could describe the space-time inside, for instance, a balloon containing pressurised gas. It
would not apply throughout all of space, as in the walls of the balloon the stress tensor would be anisotropic.
But it would apply within the body of the gas. If could also apply near the centre of a star. It may seem
strange that the metric one finds for a static source here is actually time varying but as we are working in
perturbation theory, and if we don’t consider times that are too long this appears to be physically reasonable.

D.1 Geodesic equation — non-relativistic particles

It is interesting to look at the deviation of geodesics in this space time. If we consider two initially stationary
particles with a separation & — (0,¢,0,0), as illustrated on the left in figure 26, the geodesic deviation
equation
d*€ 5 oo
— =R(,U,§U). 143
S =R(,O.ED) (143)

gives, for the rate of change of the z-component of their separation

28\"
(d—é> = R®5,U"€°U" = R o€, (144)

Figure 26: On the left are
shown the world lines for
two initially stationary parti-
cles with coordinate separation
along the z-axis. Their zeroth
order 4-velocity is as indicated.
On the right are shown two
photons propagating along the
y-axis.

The relevant component of the curvature tensor is readily found to be

. 4G
R%20 =T%00,2 — I02,0 = 5(hoo,zz + haz,00) = — 3“02 (p+3P/c?) (145)
so the 2nd rate of change of the physical separation is
. e
€= =" (p+3P/c)e (146)

where the first term is the Newtonian acceleration two freely falling particles would have towards each other
inside a uniform density sphere. We see here that the pressure enhances the gravitational tidal field; a result
of considerable importance in cosmology and in the theory of stellar structure for relativistic stars such as
neutron stars where the pressure may be comparable to pc?.

D.2 Geodesic equation — massless particles

We can also calculate the geodesic deviation for two light rays, again with separation 5 along the z-axis and
propagating along the y-direction as illustrated on the right of figure 26. In this case we have

28" .
<TA§> - Rzuﬁupuﬁﬁpy = (R%0z0 + R0y + R yzo + R yey)§ (147)

39



where the path parameter \ is affine distance, which, for our choice of a unit-|p| photon, is the same as
physical path distance. The two central terms above vanish and, with the addition of the last, we get

d? 4nG
2t = o+ P (148)

which shows that it is a different combination of energy density and pressure — actually the enthalpy — that
causes focussing of light rays.

An interesting application of this is to the case P = —pc? which can arise, in late-time inflation, if
the density of the universe becomes dominated by a scalar quintessence field or if there is a cosmological
constant A (as this behaves like matter with P = —pc?). In that case there is no focussing of light rays; if
initially parallel they remain equidistant from one another.

Note however that, just as we found with Geraint’s tunnel, if one were to measure light ray paths on a
rigid but light photographic plate (so its gravity is negligible) then one would find that rays that do not pass
through the centre of the plate would be found to be locally curved and bending outwards (as compared
to straight lines). Yet their distance from a ray passing through the centre would be unchanging. This is
because the rays, while being geodesics of the 4-geometry described by (141) are not geodesics of the spatial
2-geometry di?> = (1 — 2®)(dz? + dy?). The latter is positively curved, so initially parallel spatial geodesics
would be focussed towards one another. The question of whether A affects gravitational lensing has been
debated; we see here that A certainly does cause light bending if you measure it locally, but it does not
cause any global focussing of light rays.
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