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1 Introduction

Relativistic scalar fields are used in many ways in cosmology. Such fields appear in scalar-tensor theories of
gravity and in other modified theories of gravity. They are invoked to drive inflation, either as the inflaton
field in the early universe or as the quintessence field — one possibility for the dark energy — in late time
inflation. Scalar fields in the guise of the axion field or ultra-light axion-like fields are candidates for the
dark matter. A complex scalar field with a ‘wine-bottle’ potential can give rise to cosmic string networks,
and other types of cosmological defects of scalar fields such as domain walls have been widely studied.

All of the above is hypothetical. The only relativistic scalar field known to exist is the Higgs field. But
as Zel’dovich comments in his monograph ‘My Universe’ [?], “once the genie was out of the bottle there was
no putting it back”.

In most of the applications above, the field is assumed to be behaving as a classical field'; these fields
are bosonic and so can have large occupation numbers and may therefore exist in ‘coherent states’ in which

A notable exception is inflationary fluctuogenesis; the idea here being that, while the inflaton field can be assumed to be,
in the large, homogeneous, the modes of this field must have, at the very minimum, zero-point fluctuations.



the field has a well defined expectation value and any fluctuations about the expectation value are negligibly
small? . One can then invoke Ehrenfest’s theorem which tells us that the field expectation value obeys the
classical field equation (the Klein-Gordon equation) which is what we consider here.

Below, in §2, we develop the mathematical description of classical scalar fields. We will start, in §2.1 with
the Hamiltonian mechanics of a simple mechanical system with one degree of freedom (d.o.f.) and remind
ourselves how conservation of energy arises if the Lagrangian has no explicit time dependence (an example of
Noether’s theorem). In §2.2 we consider the dynamics of a simple scalar-elasticity field theory consisting of a
lattice made of beads on rods that are connected by springs, which, it turns out, is mathematically isomorphic
to the relativistic scalar field. If the lattice is spatially homogeneous, this system has an additional conserved
quantity; the wave momentum. In §2.3 we show how, with an appropriate choice of parameters, this ‘scalar
elasticity’ field theory becomes the relativistic scalar field ¢(Z), whose equation of motion is the Klein-
Gordon equation®. We construct the stress-energy tensor; whose vanishing 4-divergence vanishes expresses
continuity of energy and wave-momentum and we compare with the analogous tensor for electromagnetism.

In §3 we develop scalar field theory in an arbitrary coordinate system. We start by showing the form of
the action in generalised coordinates in §3.1, and we derive the equations of motion for the field in §3.2. We
do this in two ways: First, in §3.2.1, by variation of the action and then, in §3.2.2, using the ‘comma becomes
semi-colon rule’. We show in §3.2.3 how these seemingly different forms of the KG equation are equivalent.
Then, in §3.3 we obtain the equations of continuity of energy and momentum in arbitrary coordinates.

In §4 we discuss how a scalar field can drive inflation and what are the requirements on the form of the
potential imposed by the need to obtain sufficiently many e-foldings of accelerated expansion.

Finally, in §5 we turn to the question of the origin of the ‘seeds’ of structure formation. We show how
zero point quantum fluctuations of the modes of the field can generate the so-called ‘Harrison-Zel’dovich’
spectrum and also how self-interacting scalar fields can, in principle, generate networks of cosmic strings or
other cosmological defects.

2 Lagrangian dynamics of classical scalar fields

We shall start, as a warm-up, in §2.1, with the mechanics of a system with one degree of freedom, and
remind ourselves how invariance of the Lagrangian with respect to time leads to energy conservation. We
generalise this in §2.2 to the scalar elasticity field theory which, in addition to a conserved energy, has
conserved wave-momentum, and then choose the parameters of the model, in 2.3, to give the relativistic
massive scalar field theory.

2.1 A system with 1 degree of freedom

2.1.1 The Lagrangian and the action

It is useful to start with the Newtonian problem of a mass m on a spring (not necessarily an ideal spring;
its potential energy need not be simply quadratic in the dispacement) as illustrated in 1.
Letting the displacement be ¢ , the Lagrangian is the kinetic energy minus the potential energy

L($,$,t) = ym¢” — V(9) (1)

where ¢ = d¢/dt, and we are allowing for a possibly explicit dependence of the Lagrangian on time (e.g. if
the spring or mass were time dependent).
The action is a functional of the path S[¢(t)] = [ dtL.

2.1.2 The Euler-Lagrange equations:

The equation of motion or Euler-Lagrange equation is obtained by asserting that the trajectory of the
particle ¢(t) — that goes from ¢ at {1 to ¢o at ty — is such as to extremise the action: 45 = 0. Considering

21t is by no means necessary for the field to behave classically even if the occupation number is large. A counter-example
would be a field in thermal equilibrium where the occupation number is large for modes in the Rayleigh-Jeans regime, but
the quantum state of such modes is incoherent — the density matrix being diagonal — and the expectation value for the field
vanishes.

%This is the same as the relativistic version of Schrédinger’s equation that he came up with by replacing F and p in the
relativistic energy momentum relation £E? = p?c¢? + m?¢* with the quantum operators ih9, and —ihV.



Hamiltonian dynamics

» The Lagrangian for e.g. a mass on a spring is the kinetic minus
the potential energy

spring mass Figure 1: Illustration of Hamiltonian dy-

. L(g, q'g, N=K-V namics for a system with 1 degree of free-

dom (dof). The Lagrangian is the kinetic

Thisstotis S JdZL T energy K of the mass minus the potential
(1)

energy V' of the spring. The action S[¢(t)]

(1) . :
R s e b+ is a functional of the path: S = [ Ldt. Re-
quiring that the action for the actual trajec-
. obtained from 6S = 0 tory ¢(t) — for some given starting and end
points — gives the equations of motion, just

Gl plickic 0L as as one would obtain from Newton’s law.
e dt % gx % For an ideal spring, with potential energy
UV = Lkg? the force is F' = OL/0¢ = —k¢.

For the spring L = m¢?/2 — k¢p*/2 so (3@/(94} = mq and
OL/0¢p = — k¢ so the E-L equation is m¢p = — k¢p

the change in the action between a path ¢(¢) and a neighbouring path ¢(t) + d¢(t) we have

to to
; oL .. 3L
0=6S= [ dtdL = | dt| —5p+ —0
/ / <a¢ Pt 5 ¢>
t1 i1
N Ay 4 (OL\ 0L
(31
8L r: 8L d 8L
=5 +/dt5¢<———'—.)
T dp  dt 9¢

The first brace here indicates how we eliminate 8¢ by ‘hiding’ it in a total derivative term, which then drops
out in the final line as we assume that the variation of the path vanishes at the end points.

For 05 to vanish for arbitrary d¢ requires that the quantity in parentheses in the integral vanish, giving
the Euler-Lagrange equation

doL 0L
dt oy 0¢
That is quite general and applies even with a time-dependent system. For the mass on a spring, where
L =K -V with K = mg¢?/2, so OL/d¢p = m¢, and OL/3p = —OV/O¢ we have

(3)

mé = —dV/dp (4)
ie. Newton’s law F' = —dV/d¢ = ma. For an ideal spring — where the energy is quadratic: V = %k(bQ, with
k the spring constant, this gives a simple harmonic oscillator equation:

m(}ﬁ. = —ko (5)

which is linear in ¢ and has solutions like ¢ = ¢ coswt where w? = k/m.
This is all quite readily generalised to variables (or multiple degrees of freedom) ¢ = ¢;, with i labelling
the particles we obtain one equation per degree of freedom

d oL 0L
dt aq;)i B 6(751'

(6)

and if K is just the sum of the individual kinetic energies and V' some function of all of the positions, we
would have, for each 17,



2.1.3 Energy conservation

As is well known, for such a system we can define the Hamiltonian: H = pgi) — L, where p = 6L/8q5 is the
generalised — or ‘canonical’ — momentum, in terms of which the E-L equation is p = 9L/0¢. The differential
of H is .

these cancel because p:8L/8¢>

T BL oL
dH = pd¢p + ¢dp 8@5 d(f) ¢ T dt, (8)
where, as indicated, the 1st and 4th terms cancel by virtue of the definition of p. Since the only differentials
remaining are dp, d¢ and dt, H is a function only of ¢, p and ¢, and, from the coefficients of dp and d¢, we
can infer that 0H/dp = é and OH/0¢p = —0L/O¢p = —p, which are Hamilton’s equations.

Of more interest to us here is the time variation of the Hamiltonian. Considering the remaining terms
in (8), and considering the displacements dp and d¢ for a possible trajectory, for which the E-L equation
implies ¢pdp = dpdt = pdd = (OL/0¢)dg, it is apparent that the 2nd and 3rd terms then also cancel, and,
dividing by dt, we have

AR )
Thus, if the Lagrangian has no explicit dependence on time (which, here, would mean that the spring constant
k and mass m are time independent) the Hamiltonian, is conserved. This is an example of Noether’s therem,
which says that a symmetry — here the Lagrangian being independent of time — implies a conservation law
~ in this case constancy of H. For the particle on a spring with Lagrangian (1), p = me, and therefore
H = m$2/2 + V, which is the total (kinetic plus potential) energy.

This is all very nice, but we started by pulling I/ = pd — L out of a hat, so to speak. It will prove useful
to have a procedure for constructing those quantities — not just energy — that are conserved by virtue of the
symmetries of space and time.

One approach is to take the total derivative of the Lagrangian, which, for any particular solution of the
E-L equation, can be considered a function of time alone: L(t) = L(4(t), $(t),t). Applying the chain rule,
its (total) time derivative is

dL(t) OLd$ _OLdd

a9 di ' agdi 81‘
doL  0Ldp 0L

=9%as T agd T

LNELIARN)
dt \" 8¢ ot

where, in the first step, we have invoked the equation of motion to eliminate dL/0¢ and where JL /0l means
the derivative of L, considered as a function of ¢, ¢ and ¢ holding ¢ and ¢ constant. Rearranging and
combining the total time derivative terms gives

7 (95 1) =% =

where we see, on the left, the rate of change of the Hamiltonian as before.
The generalisation to a system consisting of multiple particles is straightforward. Each term in the
differential dL becomes a sum - so e.g. (0L/0¢)d¢/dt becomes ), (OL/0¢;)dp;/dt — and we have

d - JL oL
E(Zﬁbia—q%—L) = (12)

so there is a single conserved quantity; the total energy.

(10)

I

2.2 The ‘scalar elasticity’ model for a scalar field

The mathematics of a relativistic scalar field ¢(Z) is, it turns out, isomorphic to that of (the continuum limit
of) a simple mechanical model. In one spatial dimension it is illustrated on the left hand panel of figure 2;
it is an array of particles tethered to a base by springs and with additional springs coupling neighbouring
particles.



2.2.1 The discrete model

The kinetic energy is simply the sum of the kinetic energies of the particles %Mgbf, where M is the bead-
mass. And the potential energy V' contains the sum of squares of the differences of the displacements
between neighbouring particles K’(¢; 1 — ¢;)?/2, where K’ is the spring constant for the coupling springs.
To this we need to add the potential energy stored in the base-springs = quf/2. From this we can obtain
the Lagrangian

L(i, i) = %Z {M@Q — K'(¢ip1— ¢i)* — Kﬁlﬂ . (13)

We can make the system finite by having it be a closed ring of N units*, and thus ignore boundary effects. We
would then obtain N E-L equations and we would find that time-invariance (9L/dt = 0) implies conservation
of the total energy as in (12).

Az
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)
i

M

0
e
A
S0
Q00
R
\\s‘\‘\\\“;
\,\\\‘\\‘\\

0
%
X
o
Y

(X
&
N
N
X

&
&

W
X
R

X

Figure 16.1: A lattice of coupled oscillators. Massive beads are constrained to move in the vertical
direction by rods, and tethered to the base by springs with spring constant K. Neighboring particles
are also coupled by springs of spring constant K’. The displacement of the jth bead is ¢;.

Figure 2: The 1D scalar elasticity lattice model for a scalar field. The discrete version is shown on the left.
Taking the continuum limit, we get a field ¢(x,t) whose equations of motion are obtained by considering a
variation d¢(x,t) of the field, as illustrated on the right, and requiring that the action S — which becomes
a 141 dimensional integral of a Lagrangian density — be stationary with respect to this variation.

2.2.2 The continuum limit

This discrete lattice system becomes a 1-D field theory if we take the continuum limit, and let the spacing
dx between the rods become small and consider displacements that are assumed to vary smoothly on the,
now microscopic, discreteness scale. In doing so, the discrete index i is replaced by the continuous variable
x = ide and ¢;(t) = ¢(x,t). We could then work out the form of the equations of motion and the energy
etc. in the continuum limit, but it proves more fruitful to take the continuum limit of the Lagrangian (13),
in which the relative displacements ¢;; — ¢; are replaced by dz times the spatial derivative of ¢.

The Lagrangian can be written as the space integral of the Lagrangian density®

L:/d:gc (14)

where

L(d,¢,¢) = (Ap* — B¢'* — C¢?) /2, (15)

in which go = Oi¢p and ¢/ = 9,¢ (where 9, and 9, denote the partial derivatives at fixed  and ¢ respectively)
and where A, B and C' are positive constants. The first, A, is determined by the masses M of the particles
(and their spacing), while B is determined by the spring constant K’ of the connecting springs, and C
depends on the strength K of the base springs.

*Note that, in closing the ring, we have introduced another symmetry, this time a discrete one; the system is invariant under
step-wise rotations of the ring.

5We could define a kinetic energy density K = A(B)Q/‘Z, in terms of which K = fd.r K, and a potential energy density
V = (B¢ +C¢?)/2, in terms of which V = JdzV, and write £ = K — V), i.e. as the sum of a ‘kinetic’ minus ‘potential’ energy
densities. However, for reasons that are lost to obscurity, it is conventional to call Agr})2/2 — ng’z/Q the ‘kinetic term’.



The action S = [dtL is then a 1+1 dimensional space-time integral

(6(z,8)] = / /dtdxﬁ<¢,¢',¢>>. (16)

To get the equations of motion implied by §5 = 0 we imagine the 2-D surface ¢(z,t) lying above the
x — t plane, and a vertically displaced surface ¢(z,t) + dé(x,t) as illustrated in figure 2 to obtain®

58 = /dtd <—5¢+ gqiw & (%(w) (17)

What we would now like to do is somehow convert this to an integral §S = [[dt dz §¢|.. ] involving only
the variation d¢ (and not d¢ and 5¢'). To do this, we write the first term and second terms in the above

integral as
oL
———5 ]
s =a(5%¢) -2 (5) »
0L ., o (0L oL
s =2 (55) - (3)

so we are ‘hiding’ the unwanted 6¢ = 9,6¢ and §¢/ = 8,56 in the ‘total’ derivatives. The variation of the
action then becomes

- oL, .1 oL oL
65f/d:c {ﬁwk /dt[(%, } //dtdx()qS{at a%—% (19)

So if we demand that d¢(xz,t) vanish at ¢t = t; and ¢ = t5 and similarly on the boundaries z = 1 and
x = wo (or one might impose periodic boundary conditions in z) the first two terms vanish and requiring
that 05 vanish for otherwise arbitrary d¢(z,t) gives the the Euler-Lagrange equation:

(18)

oL oL
8ta—£. + O .

o Tof By (20

So we see that in generalising to a field, the equation of motion has gained the extra term 9,(9L£/0¢"). Note
that time and space appear in the equation of motion — as indeed they do in the Lagrangian density — on
an equal footing.

That is general. For the specific model £ = (AéQ—B¢’2—0¢2)/2, the partial derivatives are C?E/@g'b = A¢
and 0L/0¢' = —B¢', so the equation of motion is

Ap— B¢+ Co=0. (21)

This is a linear, but dispersive, wave equation which allows travelling wave solutions like
¢(x,t) = ¢o cos(kr — wt) (22)

which, in (21) gives the dispersion relation

| Aw? = BK? (23)
so the temporal frequency is determined by the spatial frequency (radians per metre) k.
This has the same form as the relativistic energy-momentum relation
E? = 2p? + m2&. (24)

This is equivalent to (23) if we replace IV and p by I = hw and p = hk, set ¢ = \/B/A, this being the
phase velocity of waves in the limit of high spatial frequency k > /C/B, and choose the mass m so that

SNote that there are no derivatives with respect to time or space here. This is not because £ is necessarily independent of
and/or t. If the spring constants or masses were varying with time, or position, we would still use the above expression. That’s
because it’s inside the integral — where what we need is the change in the Lagrangian density at a fixed ¢ and x.



/C/A — the frequency of waves in the long-wavelength limit & < \/C/B — be \/C/A = mc?/h, which is
the Compton frequency for a particle of mass m.
It is also identical in form to the dispersion relation for electromagnetic waves in a cold plasma:

2 272 2 "
w”=ck” +wp (25)
where wy, is the plasma frequency, below which EM waves cannot propagate. This proves to be a very useful

analogy for scalar waves as the DM, which, as we will see, are trapped in the potential wells of galaxies
much as radio waves are trapped below the ionosphere.

2.2.3 Time translational invariance

We derived the conservation equation for energy for the 1-variable system L(gﬁ, ¢) by considering the total
time derivative dL/dt considering L to be, for a particular solution ¢ = ¢(t), with associated ¢(t) = do/dt,
a function of time L(t).

Here we can do something very similar: we partially differentiate the Lagrangian density

L(x,t) = L(p(=,1),¢/(2,1), §(2, 1)), (26)

considered now as a function of x and t for a particular solution ¢ = ¢(x,t), with respect to time. Applying
the chain rule to the right hand side gives

855 +0: 55

AN BN
. e
O L(z,t) = é)_gf>8t¢ + EYY ¢ + % [4%0)
oc, . .. 0L 0L . . 0L 27)
9% 1)+ @ tad) Y o+ ¢ o9
S~ —————

0L 0L
- o) + )

where, as indicated, we are using the commutativity of partial derivatives and invoking the equation of
motion.
Collecting together the two time derivative terms, what we have here is a continuity equation

|0.£ + 0. F = 0] (28)
as illustrated in figure 3, and where we have defined
0L
Bt ik (29)
O o
which looks a lot like the Hamiltonian for a simple 1 d.o.f. system, and
- 0L
F=op—. 30
¢8 / ( )
That (28) expresses continuity of energy is seen if we specialise to the model
L=3(A¢" ~ B¢? —C¢)=K -V (31)
from which we have 9L/ d¢ = A¢ and therefore
E=1(AP*+ B¢+ C¢*) =K +V (32)
which is evidently the energy density or what one might call the Hamiltonian density.
For the travelling wave solution (22), the energy density is
& = 3¢5[(Aw® + Bk?) sin®(kz — wt) + C cos®(kz — wt)] (33)

= 1¢8[2Bk? sin? (kz — wt) + C]

as illustrated in figure 4.
If we integrate (28) over position x and assume either periodic boundary conditions or that 7 — 0 at
r — £00 we evidently have a globally conserved total energy I = f dz&, since

dE d '
————/@5—/m@5—ﬁm@f:ut§:0 (34)
dt dt ‘

8



The energy continuity (or conservation) law

Figure 3: Energy conservation in a 1-
Area A F(x) F(x+ 6x) dimensional field theory is like a 1-
dimensional flow of compressible fluid in a

X X+ ox pipe. At any position in the pipe there is
a 1-dimensional energy-density £ (mass per
unit length in the fluid analogy) and there
. the change in OF in time At is energy in minus energy out, or is a flux-density F. In 3-D the units of flux
density are energy per area per time. In
1D it is just mass per unit time. If F is
constant in x then there is no build up or
decrease of density, so & — note this is a
but ASE = 0VAt0& /ot = AAt X 5x0& /ot partial derivative at fixed position — van-
ishes. In general & = —8F/dz (in 3D the
right hand side becomes minus the diver-

S0 Ox0& /0t = — 6F or, taking the limit, 0&/0t = — 0F /0x gence =V - F).

« The energy in the volume element 6V = Adx is OF = &6V

o ASE = AAHF (x) — F(x + Ox)) or AOE = — AAt X 6F

« where & is the energy flux density = energy per area per time

« 0&/0t being the rate of change of energy density at that x

E(x, 1) = ¢g[2Bk2 sin?(kx — wit) + C1/2
v=wlk

Figure 4: The energy density for a travelling
wave @(x,t) = ¢ocos(kx —wt) has a spatially
constant component & = ¢3C/2 plus a mov-
ing ripple, contributing a mean energy density
(€) = $2Bk?/2. The ripple travels at the phase
ZBK*/2 $eCi2 dy(BK* + C)/12 velocity v, = w/k. The effective velocity at
which energy is being transported is smaller than
_vp by a factor Bk?/(C + Bk?), and is equal to
Ythe group velocity vy = dw/dk.

2.2.4 The energy flux density

What about F7 This must represent the energy flux density. Is this reasonable?
From (15) we have 0L£/8¢' = —B¢/, so

0L

of

Does this make sense? Consider a wave ¢ = ¢gcos(kz —wt). This is a wave propagating in the +uz

direction since kx — wt = constant implies kdz = wdt so v = dx/dt = w/k. The mean square value of ¢? in

the energy density (32) is (¢?) = ¢3(cos®(kx — wt)) = ¢#3/2 where (...) denotes average over time or space
(or both). Similarly, (¢?) = w?¢3/2 and (¢'*) = k2¢2/2 so

= B¢ (35)

(€) = $(A(”) + B{g™) + C{¢?)) = 363(Aw? + BK? + C) = LA (36)

where, in the last step we have used the dispersion relation (23). In the energy flux density, (f) = waogsin(kr — wt)
and ¢ = —k¢p sin(kx — wt) so ’
(F) = —B(dd) = 5Bwkd; (37)

and it is reassuring that this is positive, as one would expect for a wave propagating in the 42 direction.
However, the speed v at which the energy is propagating must be the mean energy per unit time crossing
a position (e.g. # = 0), which is (F) divided by the mean energy per unit length, which is (£), so, using
(37) and (36), this is
(F) Bk

=E " A (38)

This seems at odds with the velocity the wave is propagating: v = w/k. But the difference is simply that
the latter is the phase velocity while that above is the/group velocity, which is not w/k but dw/dk or
dw _k duw? k d(BK? + C)/A Bk (F)

il i (39)

BTk T wdke W ke T Aw (&



as illustrated in figure 5.

phase and group velocity - a simple example

W\/\MMW/\/MM\/ Figure 5: Phase and group velocities for

waves in a dispersive wave-system can

be understood in a model where, in 1-

dimension for simplicity, we add two waves

| with slightly different spatial frequencies.

AL s et e Simple trigonometry shows that this gives a

g=b a+b carrier wave, the wave-crests of which prop-

> i < ) agate at the phase-velocity @/k, modulated

| 4= @+ A2t — (E+ Ak/2)x by an enve]Qpe that propagates .at speed

. so for travelling waves iy . Aw/Ak, which, for small Ak, will be ap-
b= (@ - Aw/2)t — (k— Ak/2)x . y : :

A proximately dw/dk. A non-dispersive wave-

« cosa+cosh = 2cos(Awt — Akx)cos(@t — kx) system is one for which w o k, for which the

« carrier cos(@t — kx) moves with “phase” speed @/k — w/k phase- and group-velocities are the same.

“carrier” wave
modulated by
‘envelope” —

, trigonometry —  cosa +cosb = 2cos (

. envelope cos(Amt — Akx) moves with “group” speed Aw/Ak — dw/dk

Phase and group velocity - wave packets

* The wave-crests of the
single wave mode
¢ o< cos(wyt — k-1 +y)
advance in the direction k
with speed equal to the
phase velocity v, = @ /k

Figure 6: More generally, one can con-
struct wave-packets by summing a num-
ber of waves of slightly different fre-
quencies. At left is shown an example
in 2-dimensions. The individual wave-
crests move through the packet; appear-
ing at the trailing edge and disappear-
ing at the leading edge. The number of
waves N is on the order of the inverse of
the fractional width in spatial frequency
Ak/k. Wave packets tend to spread as
they propagate, but nearly monochro-

matic wave packets — which have large N
* for the massive scalar the — travel about N times their size before

dispersion relation is

v, = klay A scalar field wave packet in 2+1D  spreading appreciably.

» |f we add a collection of
waves with wave vectors
close to some mean wave-
vector K we get a nearly
monochromatic wave-
packet which moves in the
direction of kK with speed

equal to the group velocity

v, = doy Jdk

The conservation law (28) is a consequence of the symmetry that the Lagrangian density does not depend
explicitly on time ¢ (i.e. the mass- and spring-coefficients A, B and C' are constant) and is another instance
of Noether’s theorem.

2.2.5 Spatial translational invariance and wave momentum

We have assumed that all of the masses, all of the potentials and all of the connecting springs are identical,
so, in the continuum limit, A, B and C', and hence also £, are independent of position x. This invariance
of £ with respect to spatial displacements implies that there is another conserved quantity that we will call
wave-momentum.

It is easy to obtain its continuity equation. If we swap z < t and ¢ < ¢ in (27) we obtain

oL oL
0, L =0, ¢ =— | + 6 < /—.> 40
Oy, o (@ 8@15’) t 90 ( )

which, combining the spatial derivative terms together, gives

P + x5 = 0] (41)

10



where we have defined the wave-momentum density

= _d é)—E- (42)
o
and the wave-momentum flux density (or wave-stress, if you prefer)
oL
S=€=d——, 43
V5 (13)

If we integrate (41) over position z and assume either periodic boundary conditions or that & — 0 at
r — 400 we evidently have another globally conserved quantity, the total wave-momentum P = [ dzP,
since

P d
-Et—_Zi—t/de:/dxatPZ—/dxaxS—O- (44)

The above expressions are general, and can be used for self-interacting fields (1attices for which the
base springs have non-quadratic potential energy). For the free-field model £ = %(AqbQ — B¢? — Cp?), the
wave-momentum density is

P=—A¢d 25}

so this is just A/B times the energy flux density F. So, like F, it is positive for a wave — or wave-packet —
propagating toward positive z (i.e. with positive k).

On the other hand, it is not difficult to see that the total wave-momentum is not the same as the
normal momentum (which is just the sum of the mass times velocity). For one thing, it is quadratic in the
displacements while the normal momentum is linear’. Both normal momentum and wave-momentum are
conserved. But their conservation arises from different symmetries. The normal momentum is conserved
because of the homogeneity of space. The Lagrangian is the same no matter where in the universe the system
is located. The wave momentum is conserved as a result of the properties of the lattice being independent
of location on the lattice. One could imagine a lattice in which e.g. C' were to vary with position. This
would then not conserve wave momentum. But the normal momentum would still be conserved.

While the wave-momentum should not be confused with normal momentum, it does at least have the
right units. The units of £ are energy density (linear density that is) or [MLT 2], and the units of S are
evidently the same, so from (41) the units of P are [MT '] and so those of P are [MLT '] which are those
of momentum. Similarly, the wave-momentum flux-density S or stress has units of stress in 1D (in 3D stress
is momentum per area per time, here it is just momentum per time or [MLT ~?]) but should not be confused
with the stress in the springs. There is stress in the springs, but it is linear in the displacement ¢. In the
ABC-model §

S = 3(A¢* + B * — C¢’) (46)

so just like £ but with the sign of the ¢/* term flipped. It is, like P, quadratic. For a wave, or a wave-packet,
or a collection of waves or wave packets, the average A($?) = B(¢?) + C(¢?) so the time and/or space
average of the stress is

(S) = B{¢) (47)

and is positive regardless of the direction of the wave. A wave with positive (negative) k carries positive
(negative) wave-momentum in the positive (negative) az-direction. Thus a wave packet composed of waves
with negative k, in moving from -+ to —z, is transporting momentum in the positive direction. This is
like kinetic pressure in a gas, where both positive and negative moving particles constitute a positive flux
density of momentum.

The continuity equation (41) is, in essence, Newton’s law that rate of change of momentum is equal
to the force. Here we have that the rate of change of wave-momentum density is the force density, being
(minus) the I-dimensional divergence of the momentum flux density or, equivalently, the pressure gradient.

“If we have a system of N particles interacting via a potential V(ri,r2,...) then the change in V under a displacement of
the system dr is dV =dr -5, 0V/dr; = —dr - Y, ps. So if V(r1,r2,...) is invariant under displacements the total momentum
P =3 pi is conserved.

11



2.2.6 Some questions concerning wave momentum

1. Consider the sum of two waves with similar k& and calculate the speed with which the ‘beats’ move.
Convince yourself that a nearly monochromatic wave-packet — i.e. one composed of many waves with
a small range of & moves at the same speed as the beats for the simple two-wave model.

2. Sketch the phase- and group-speeds for the 1-dimensional ABC-model as a function of k.

3. For a wave packet of finite extent show that if we integrate the rate of change of the energy- or
momentum-density over all space the spatial derivative term vanishes. Obtain thereby a relation
between total energy and momentum for wave-packet. What does this remind you of?

4. Show that for long wavelength fluctuations — such that B¢ ., < C¢ or A2 > B/C — one can make
a change of variables ¢(z,t) = (1(x,t)e"™ + c.c)/2 where c.c. denotes complex conjugation and
m = +/C/A and where 9(z,t) is slowly varying with time-scale for variation 7 ~ (v AC/B)A? and in
terms of which the Euler-Lagrange equations become (to leading order in B/(C\?) < 1) idy /ot =
2\/]?4—0821/)/8:52 and the momentum is p = m/ﬁf dx (p*0)/0x +c.c.)/4 plus rapidly oscillating terms

whose time average vanishes. What do these equations remind you of?

5. Regarding the previous question, does it seem strange that the original field ¢ has only one real degree
of freedom while the complex field ) has two? What gives? (hint: you changed from an equation that
was second order in time to one that was first order).

6. Generalise the theory to allow the coefficient C' to vary smoothly with position. How does that
change the continuity equation for momentum? (Hint: be careful — what we called £ , was the partial
derivative of £ considered as a function of z and ¢. That was fairly unambiguous since £ did not
have an explicit  dependence. Here you have L(¢, b, ¢ ,x). You may want denote what we called
L, above as dL/dx or maybe d;L to avoid confusion.) What does this modification imply for the
rate of change of momentum of a wave-packet? Hint: You might want to draw the analogy with EM
waves propagating in a plasma with varying plasma frequency (where, for instance, radio waves can
be reflected from the ionosphere).

7. What if we had a finite lattice like this on a skate-board with a wave-packet propagating along it
carrying energy and wave-momentum in the 4z direction say. When the packet reaches the end, it
will reflect and the sign of the wave-momentum will flip. Would we see the skate-board start to move
from the recoil?

8. Considering again the long wave-length limit, show that while the time-averaged wave momentum flux
density is very small compared to the energy density, there is a very large fluctuating component for
which (S?)1/2 ~ (£).

2.3 Transition to a relativistic massive scalar field
2.3.1 Lagrangian, action and equations of motion

The transition to a relativistic real massive scalar field is mathematically straightforward. First we make
x a 3-vector x. So we're now considering waves that will behave analogously to those on something like a
springy mattress or crystal lattice. Such a lattice — if spatially homogeneous and non-time varying — will
have, in the continuum limit, 4 conserved quantities; the energy and 3 components of the wave-momentum.
Monochromatic waves ¢ = ¢gcos(k - x — wit + 1) are now defined by the amplitude, the phase, and by
the 3-dimensional wave vector k. As indicated, the temporal frequency will be a function of k. We will
determine this presently.

Second, we introduce z” = ¢t as the ‘time’ coordinate, giving it the same units as x. This is not essential;
we will later work in coordinate systems where this is not the case, but it is convenient.

Third, we fix the ratio of the constants A and B so that the high-|k| asymptotic wave-speed (phase- or
group-speed as these are identical in the high-£ limit) is equal to the speed of light c.

Finally, we replace the displacement ¢ — ¢* = ¢/ VB and drop the star. The Lagrangian density is now

0

L(¢a,¢) = —3(d,at™ + 1i*¢?) (48)

—

o
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where 42 is a suitably re-scaled version of C' and which, if ¢ is taken to be a Lorentz scalar (i.e. frame
independent), is manifestly Lorentz invariant.

In the process of re-scaling the field, we changed its units. We will demand that the Lagrangian density
have units of energy density: [ML 'T2%], so the field ¢ now has units [M'/2LY/2T-1). A useful thing to
remember is that ¢? has units of force. The constant y evidently has units of inverse length.8

Allowing for the possibility that the Lagrangian have an explicit dependence on space-time location T -~
as would be the case if the field were interacting somehow with other fields or particles — the action is

1
S=- / d*z L(},a, §, T) (49)
c
whose variation is ’
55 = - / d'z 5L(} 0. ¢, T) (50)
e
in which the variation of the Lagrangian density (at fixed &, since L is inside the integral) is
oL oL
L(} o, d,T) = =—3 —
((Z),a, ¢, a¢’a b0+ 96 Yo
(51)

oL
=5 ¢) =00 <a¢,a>a+5(b‘a$

where we have performed the usual trick of ‘hiding’ the variations of the derivatives d¢, in the ‘total
derivative term, so the variation of the action is

[ [ 2L 55 L [ oLy ot
55—{/dla¢o5cﬁ}ti c./dmb((@é,a)a 8¢>>' (52)

where we have imposed periodic spatial boundary conditions®. If we demand that §¢ — 0 for t; — —oo and
ty — 400 then the boundary term [...] vanishes, and the vanishing of 6.5 for otherwise arbitrary 0¢ requires
(...) in the integral vanishes, which gives us the Euler-Lagrange equation:

oL oL
e e

This is valid for arbitrary £(¢ qa, ¢, ). From the specific Lagrangian density (48) — which has no explicit
Z-dependence — we get the Euler-Lagrange equation for a real scalar field:

0,0%¢ — 19 =0 (54)

which is known as the Klein-Gordon equation for a real scalar field. This is a free field; it has no self-
interaction, by virtue of the fact the the potential energy term is simply %,qubZ, so we get a linear wave
equation. This means that we can superpose solutions; waves, or wave-packets, can pass through one another
and emerge undisturbed. It is for this reason that equation (48) is called the ‘free-field” Lagrangian density.

Inserting a trial solution ¢(Z) = ¢o cos(k - x — wt), or equivalently, with k —> (w/e,k) and & — (ct,x),

&(Z) = ¢o cos (E : f) (55)
gives the dispersion relation kok= 1?2 or

w? = Ak + 1?). (56)

81f we were working in natural units where the units of mass length and time are Mp; = \/he/G = EP}/CQ, Tpy = /hG /> =
h/Ep and Lpy = /hG/c® = he/Epi (in which units, the values of the fundamental constants ¢, G and h are all numerically
unity) then we could say that energy density has ‘units’ of E, and that both ;o and ¢ have ‘units’ of Epi = \/hc®/G.

9There are two ways of thinking about periodic spatial boundary conditions. One is to say that, for all we know, our universe
itself could be finite and periodic, but, provided it is large enough, this should have no effect on local physics. Another — and
this is a much more satisfactory way of thinking about the situation in cosmological simulations that invoke periodic BCs —
is that the universe is infinite, but that we choose to consider the evolution of fields that are periodic, with some long spatial
period.




The KG equation (54) is actually often written with me/h in place of p. This is a source of considerable
confusion, as the presence of & leads the uninitiated to think there is something quantum mechanical about
this. But that is false; the field here is a classical field, just as the E and B fields in the classical Maxwell
equation are classical fields. Writing the spatial frequency parameter p in terms of i doesn’t change this.
Now of course, we should be treating the field using quantum mechanics. One way to do that, as discussed
earlier, is to consider the Fourier modes of the ¢-field as a set of independent simple harmonic oscillators.
BFach of these has a wave function — a function of the mode-amplitude ¢ — and we can define creation and
destruction operators and generate occupation number eigenstates etc. The particles thereby created, which
are bosons, have Compton wave-number kc = me/h = p. Transition amplitudes for scattering processes
are then obtained by writing the interaction Lagrangian density in terms of these operators and then using
the non-relativistic Schrédinger equation — not the equation above — to evolve the quantum state. In this
framework, what (54) describes is the evolution of the expectation value of the field in such a quantum state,
which, according to Ehrenfest’s theorem, is described by the classical equations of motion.

As something of an aside, the boundary term [...] in (52) is a useful starting point for developing the
Hamilton-Jacobi formalism as it tells us that the action, considered as a function of the field and time
S(¢,t) for a family of fields that had the same value at some initial time ¢; (but a range of time derivatives)
has 65/6¢ = cdL/d¢p and has AS/dt given by minus the Hamiltonian: 0S5/t = [z (L — $pOL)DP) =
— [d3zT%. We could then write down an approximation to the wave function ¥(¢,t) ~ €*/" 4 la Dirac
and Feynman.

2.3.2 Stress-energy tensor for the real scalar field
For the ‘free-field” (with no interaction to other fields or particles) the stress energy tensor is simply
g P}

F S (57)

o
where e.g. F is the generalisation to 3-dimensions of the 1-dimensional energy flux density used above and
can be cast into a transparently Lorentz invariant form using the re-scaling described above. This is quite
analogous to the stress-energy tensor for electromagnetic waves, with F being the analogue of the Poynting
flux.

As we may want to include couplings between fields, or other external influences, we now show how the
stress-energy tensor is obtained for the more general Lagrangian density £(¢ o, ¢, Z). The partial derivative

of L(7) = L(6a(F), 6(7), 7) is

AL, oL oL
OpL(Z) = 90 = =00 8(;586(1) + 928
i EE R
oL oL oL
= g tabat (8%) 0t gt &

i oL
~(g0e) * 7

where, in the first step we have used the commutativity of partial derivatives and have invoked the equation
of motion (53). Note that here and below, if the arguments of £ are not given explicitly £ assumed to denote
L(¢ ., ¢, 7). Thus, for example, final terms on the right hand side are the partial derivative of L(¢ o, ¢, 7)
holding ¢, and ¢ fixed (whereas on the left hand side d5L(Z) means the derivative with respect to the g
component of # holding the other components fixed).
Replacing 5 L(Z) by 650.L(7) gives

T% a0 =Lg (59)
where the (mixed version) of the stress-energy tensor is
oL
T =———¢ 5+ 3L 60
B a¢ N B B (60)
or, raising the index £ with the Minkowski metric,
TOH ¢ + %L (61)
7¢ o
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obeying the continuity equation(s)

T = LP (62)

where, at the risk of being repetitive, the right hand side means the (contravariant components of the)
derivative of £(¢ o, ®,7) with the field and its derivatives held fixed.
For the free field with Lagrangian given by (48), the stress-energy tensor is

1% = ¢°2¢" + 1 (— 50,07 — 31°¢%) (63)
or, in 3+1 form,
T8 = {5 7’] _ F(éb?/& + VeI + 4?¢?) ~$Ve/c (64)
F S ~$Vo/c Voo Ve+5(67/ — |Vl — p¢*)I

where I is the 3 x 3 identity matrix and V¢ ® V¢ is the (tensor) outer product. Note that this is symmetric.
Note also that, for a purely time varying field, so V¢ = 0, as is assumed in inflation, the stress-energy tensor
is diagonal: T = diag(€, P, P, P) with & = pc? = 3(¢?/c® + p?¢?) and pressure P = %(452/02 Rt e,
if $2/c? < p?¢? this gives P = —pc?.

If there is no explicit dependence of £ on 7, the right hand side of (62) vanishes, and we have To‘ﬁ’a =0z
In that situation, there are 4 conserved quantities: fd37" 795 which are the space integrals of & and P, so
the total 4-momentum is conserved.

It is interesting to compare (64) with the stress-energy tensor for electromagnetism. The (mixed) co-
variant form of this, which can be compared with (63), is

TH, = Mal(Fuame w %5};170{[3}7'&[3) (65)

(where Fog = A — Ap,q is the Faraday tensor) and which can be derived,!? as can Maxwell’s equations,

from the Lagrangian density
\

L{Ayy) = —g=F* Fop. (66)
The 3+1 form of this (as derived by Maxwell and Poynting) is
Taﬁ — E P/C — %(60|E|2+ﬂ51*B|2) E XB//‘LOC (67)
P/c —o E x B/uoc —(E® E — JEPI) — 45 (B ®B — 3|BJ*I)

in which we see the Poynting flux P = E x B/ug and the Maxwell 3-stress tensor'! o. So we see that

the stress-energy tensors for the scalar field and EM are quite similar. The latter is very similar to the
former for a massless field (4 = 0) and with, roughly speaking, E and B playing the role of the time and
space derivatives of the field ¢. The details of the 3-stress are somewhat different, however. In particular,
while the EM field has tension along the field lines, the isotropic tension in inflation — probably the most
important application of scalar fields in cosmology as it accounts for the creation of the universe — arises
from the potential term (here 7j; = f%;ﬂgb?&j but, more generally, T;; = —V (¢)d;;).

2.3.3 More general relativistic field theories

It is possible to construct variants of the KG theory while maintaining the attractive properties of relativistic
invariance.

One possibility is to replace the harmonic potential energy term 12$? /2 by a more general function of
the field, usually denoted by V(¢). In the mechanical analogue, this would correspond to making the ‘base
springs’ anharmonic. This changes things radically: the free-field theory described above has equations
of motion that are linear in ¢ so we can add solutions and plane wave solutions, wave-packets etc., can
propagate without interacting with each other. With a non-harmonic potential V(¢) the force —dV/d¢ in
the KG equation is no longer linear in ¢. So there will be wave-wave interactions at the classical level and,
correspondingly, scattering of particles in the quantised field.

197 you follow the procedure used here you will end up with a version of the stress-energy tensor which, like (65), has vanishing
4-divergence, but which is actually not symmetric. But, as described in Jackson, you can symmetrise this by adding a term
that does not change the 4-divergence.

'Maxwell defined o to be minus the momentum flux density
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Another possibility is to have multi-component scalar fields. One can construct theories in which the
Lagrangian is the sum of the individual free-field Lagrangians plus interaction term(s) involving the various
fields. For example £ = L4+ Ly, + Lint (¢, ) containing two free-field Lagrangians plus an interaction term.
This again would allow scattering of waves also such phenomena as spontaneous symmetry breaking.

Another application of multi-component scalar field is the complex scalar field (a field with two compo-
nents that can be represented as the real and imaginary parts of a complex field). This can represent an
electrically charged field if coupled to the electromagnetic field by replacing the partial derivatives 0y in the
theory by the gauge-covariant derivatives D,, = d,, —i(q/h)A,. Another application of a complex scalar we
will explore later — this time with a ‘wine-bottle-bottom’ potential, so it is self-interacting — can generate
cosmic strings.

A great many variations on the above themes have been explored in cosmology. Much more radical — and
questionable — are proposals to modify the Lorentz-scalar kinetic term —¢ ,¢® in the Lagrangian density'?
by replacing it, for instance, by some function of this scalar.

2.3.4 What does it mean?

We started with a simple, and conceptually straightforward, model for a ‘solid-state’ lattice — a slightly
modified version of what Ziman [?] calls the scalar elasticity model — where the field was simply the physical
displacement of the masses and the energy was the kinetic and potential energies.

Waves and wave-packets on such a lattice, we noticed, had properties rather similar to that of relativistic
particles, and the Lagrangian density has a symmetry very similar to that of relativistic systems under
Lorentz boost and other transformations (with the high-k asymptotic sound speed in place of the speed of
light).

The relativistic real massive scalar field is mathematically identical; the formal transition being essentially
a matter of choosing appropriate constants for the three terms in the Lagrangian density. But you probably
shouldn’t take this literally and think of there being an underlying physical lattice on which the fields
we observe are a physical displacement. Though it should be recognized that e.g. Maxwell did think of
the EM fields as propagating through an aether that had some microphysical mechanism communicating
disturbances. He talked of the hidden underworld in which ‘the medium [...] may have rotatory as well
as vibratory motion’. He is also supposed to have said ‘I didn’t really get rid of action at a distance, I just
replaced a big action by lots of little actions’.

The field ¢ is probably best visualised as a displacement in some abstract space. In this view, the the
elastic lattice model is seen as something that just happens to have exactly the same equations of motions,
and demonstrates all of the continuity laws etc.. It is nonetheless perhaps helpful in giving a mathematically
precise but conceptually unchallenging analogy that greatly helps visualise and concretise the mathematical
concepts.

If ¢ ‘lives” in an abstract space, we don’t need to worry about the ‘normal’ momentum; we just have
fields, and all there is is wave-momentum. It may be transferred between the different fields, but it obeys
continuity by virtue of the symmetry of space-time with respect to translation and its space integral — if
defined — is conserved.

The theory thus developed is that of a classical field; the equation of motion is, it turns out, identical
to the relativistic equation for a single-particle wave function originally proposed — but then discarded — by
Schrédinger, but the interpretation is very different. The free field can, as discussed above, be decomposed
into independent harmonic oscillators which can be quantised in the usual way (exactly as we would for
phonons) and this leads to bosonic particles, and that allows one to construct, for example, coherent states
that are analogous to the coherent light from a laser. These are states which are a carefully organised
superposition of occupation number eigenstates whose wave-functions — functions of the mode amplitude ¢y
that is — add up to give a a well defined expectation value for ¢y, about which the quantum uncertainty is
relatively small, and in which the expectation value obeys the classical field equations derived above.

2.3.5 Applications of the scalar field

Here we expand, a little, on the introductory comments. As noted by Zel'dovich, scalar fields are ‘the
genie that escaped from the bottle’ with the invention of the Higgs field, and have been used extensively in

2 As already mentioned, this terminology may seem rather odd since, in the elastic analogy it is only the time derivatives
that one would consider to be kinetic energy; the spatial gradients of ¢ contributing to the potential energy.
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Figure 7: Energy eigenstates |n) for a quadratic potential are shown on the left. The expectation value

of the displacement (n|z(t)|n) vanishes in each of these states. On the right are shown coherent states
2 n

la) = e~lel/2 37 % |n) (discovered by Roy Glauber) for |a|? = 5 and 10. These states have a well defined

n
expectation value Z(t) = (a|z(t) |a) which oscillates between the classical turning points and which obeys
the classical equation of motion # = —w?z. The assumption usually invoked in cosmology is that each
k-mode of the field is in a coherent state, and this results in a well defined expectation value for the total
field synthesised from these modes.

cosmology; most notably in inflation but there are many other applications ranging from the sublime to the
ridiculous.

At the sublime end of the spectrum is the Peccei-Quinn axion which is a fairly well motivated candidate
for the dark matter (DM). More speculatively, ultra-light scalar fields are another popular candidate for the
DM. These are applications where the field is effectively [ree.

Scalar fields are also invoked to explain accelerated expansion in two different contexts: One is in the
early universe, when, in what is called inflation, a phase preceding what is usually called the big-bang,
the universe underwent accelerated expansion, driven by a hypotherical inflaton field. The other is in the
late universe, where the universe seems to be entering a period of late-time inflation and hypothetical field
invoked to drive this is often called quintessence (though it should be noted that Einstein’s cosmological
constant with a suitably small value is a viable alternative).

These latter applications typically, but not necessarily, invoke non-harmonic potentials V(¢). The essen-
tial idea is that if, within the region of the universe of interest, the scalar field is homogeneous, one can ignore
the (V)2 term in the stress-tensor and the energy density and pressure are then £ = pc? ~ ¢2/2 + V()
and P ~ <§2/2 — V{(¢). If, moreover, the time derivative is sufficiently small, this allows the pressure to be
negative, and, if P < —pc?/3 this drives accelerated expansion.

Yet another, extremely rich, application of scalar fields is in attempts to modify Einsteinian gravity.
This goes back to the Brans-Dicke scalar-tensor theory for gravity.

There are many beautiful similarities, some of which will become apparent later, between scalar waves,
and scalar field wave-packets in particular, and particles, both in how they behave and in the form of their
stress-energy tensor, which appears as the source driving Einstein’s equations. We will show, for example,
that if one has a random sea of KG waves then the stress energy tensor is T = fd3kP¢(k)E ® k, which
is identical to that for particles obtained above, T = [d®p/p’f(p)F @ p, with the phase-space density
f(p)/p°(k) replaced by the power-spectrum of the waves: Py(k = p/k).

3 The classical scalar field in a general coordinate system

We allowed for, but have not yet much used, the possibility that the Lagrangian density may have an explicit
dependence on location in space-time. Space-time dependence of the Lagrangian density comes about in
at least two ways. First, if we have interactions between fields, for example two fields ¢ and v with a
total Lagrangian density £ = Ly + Ly, + Lint (¢, 1)) containing two free-field terms plus an interaction term,
then we can study the evolution of one of the fields, say ¢(Z), considering the effect of 1)(Z) as an external
influence. This changes the force term in the KG equation for ¢ and it gives a non-vanishing 4-divergence
for the energy and momentum of the ¢-field, as it can exchange energy and momentum with the other field.

Second, and this is the aspect we explore here, it allows one to obtain the equations of motion and
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continuity equations in alternative coordinate systems. One important application in cosmology is to obtain
an efficient description of the evolution of waves that are statistically spatially homogeneous on surfaces of
constant cosmic time. To do this, we will use FLRW coordinates (in Lecture 6: §2.1). Another is to model
how scalar waves behave in inhomogeneous cosmologies; and we explore their behaviour using the metric of
weak-field gravity in Lecture 6: §3. We also consider the case of coordinates tied to an accelerated observer.

3.1 The transformation of the action

Consider an element of the action

dS = d*z L(¢ 4, ¢, T) (68)

which is valid in Minkowski space, or, by virtue of the equivalence principle, in a locally inertial coordinate
system. What does this look like in a general coordinate system?

Consider the free-field Lagrangian density was £ = — %qb,agb’a — u?¢%. The kinetic term contains ¢ ,¢ =
naﬁQa(bﬂ. This is the same, in inertial coordinates, as gaﬂqb;aqﬁ:ﬂ since, in such coordinates, the components
of (the inverse of g) are n®? and the Christoffels vanish. But that is a scalar, so it is valid in arbitrary
coordinates. Also, the covariant derivavative of a scalar field is just the ordinary derivative: ¢., = ¢ 4, s0
we have, in general, ¢ ¢ = go‘ﬂq{agb’ﬁ.

Alternatively, going back to basics, we may simply write the new (primed) coordinate system as

2 = 8" (2%) (69)
for which coordinate differentials transform as

da® = ’A“/&dxa (70)

with transformation matrix Aa/CY = &z’al/@ma. The partial derivatives are then ¢ , = Aa/aqb’a/, so the kinetic
) / ’ 1l
term is!® A¥, AP 8 7]‘“3(1)’0/@75/ = g*# G g
Either way, we simply need to make the replacement

¢,a¢7a = gal6/¢,a/¢,ﬁ’ (71>
SR, ey i S

in the Lagrangian density. The mass term is invariant as ¢ is a scalar, so for the free scalar field, the
Lagrangian density becomes

L(borsd) = —10%P ¢ wd g — Lu28” (72)

and self-interacting fields would be the same, but with % p2? = V(e)

The other thing we need to do is replace d*z by |8xa/6a;o‘/|d4x’ where we see the Jacobian of the
transformation, which is the determinant of the transformation matrix. But we would rather express this
in terms of the metric. In many of the cases we will consider the primed-frame metric is diagonal, and
the 4-volume element is simply d*z =[], V/|gaar|(dz®)2 = \/~|g|d*a’. For example, for the spatially flat
FLRW metric ds? = —c?dr?+a(7)?|dx|? this is straightforward and we have, in 2% = (7, z,y, z) coordinates,
d*z = ca®d*z’. As another example, in Rindler rocket z® = (£, x,y, z) coordinates, d*z = c(1+ ax/c?)d*a’.
In general, a symmetric matrix M can be diagonalised: M’ = R-M - R~! = diag(\o, ..., \3) where the \;
are the eigenvalues of M and R is a ‘rotation’ matrix (it has six degrees of freedom in 4-dimensions). But
the determinant is invariant under this rotation, so, in general, we need to replace, in the element of the
action above, 4

d*z = \/gd*s’ (73)

where we are defining \/g = /—|g]|.

With these substitutions, and dropping the primes, the action is

S = %/(1437\/5 L(¢.00, §, T)
(74)

1 :
= Z/d"w\/é (—%g“ﬂ(f)cb,acb,ﬁ - %/fqﬁ?)

13\’\/’6 use herC thC faCt that the s llafed interval ([52 = Ta/de dI'ﬁ is an invariant, SO, using the tl"ansformatlion of diﬂ‘erentials,
. q y Jof 2
Lhis is dSQ = (A ’ AB 3'NaB dx dJﬁ which gives us the transformcd metric o' B = A o Aﬁ 'MNas- The faCL Lhat its inverse
o B’ Naf ) Ga'p B/ MNap

g’ 4 £ B . E i . 4 ~
transforms as ¢g® 7 = A* , A% 50 is readily verified using the fact that A% A g =05,
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where the first line is general and the second line is specific for the free massive scalar field, though self-
interactions can be incorporated with V'(¢) here in place of %—uz(j)Q. As indicated, the Lagrangian density in
the new coordinates has acquired an explicit dependence on the coordinates coming through the metric in
the kinetic term!4.

3.2 Scalar field equations in general coordinates

There are two ways to obtain the field equations; one is Eo vary the actioa (74), the other is simply to write
the flat space-time KG equation in a generally covariant manner. These two routes yield expressions for the
kinetic term that appear to be different, but are, in fact, equivalent. Both, as we shall see, are useful.

3.2.1 Field equations from variation of the action

Varying the action (1st line in (74)) gives

1 oL
5S = E/d%( fa%&;sa +¢§%5¢ >

l

%/d"x o (\f&/)a(w) <\/—8¢ >6¢+f (75)

ul {\F%aw] /d%\/gaqb {“%% < gaisi) g %ﬂ

Requiring that d¢ vanish on the boundaries — which, if we have periodic spatial boundary conditions, means
on the hypersurfaces t = oo — and that 65 vanish for arbitrary d¢, gives the general form of the scalar
field equations of motion in an arbitrary coordinate system:

1 oL oL
= < g > = oo (76)
V3 0% I
For the free massive scalar field Lagrangian density, for which OL/O¢ o = ~qaﬁ¢g and V(¢) = %—,u/z(b? SO
OL/Op = —dV/dp = —p?¢, the KG equation in an arbitrary coordinate system is

%%(\@gaﬁaﬁ@) —2p=0. (77)

We see here that the d’Alembertian (or wave) operator [ that we have in the KG-equation in Minkowski
coordinates has become

0= —08.0% = —/7 ' 0a(v/59%8p). (78)

We will use this below to study expanding scalar waves using FLRW coordinates.

3.2.2 Field equations from generalised covariance
The KG equation in locally inertial coordinates can be written in a generally covariant manner as

QWQMV = N2¢) =0 , (79)

since then g = and ¢,,., = ¢, .

But this is a tensor (actually a scalar) equation, so should be valid in an arbitrary coordinate system.
The field ¢, being a scalar, has ¢, = ¢, so

d):,p;u — ”LL v = ¢/_Ll/ - Faul/g’b?a- (80)
So the KG equation in general coordinates is
9”1/(,@7#1/ - Fa/w(b,a) - NQ(/5 =0. (81)

We will use this when we consider how scalar waves behave in gravitating structures.

" An alternative would be to define the Lagrangian density to be the entire integrand in the first line above; i.e. include the

factor /g in L.

19



3.2.3 Equivalence of the two versions of the kinetic term

Comparing (81) with (77), it must be the case that

S5 00) = 9+ (4 VB, VE) d
(82)
="+ (9“% + 979,/ \/§> o
is the same as
9" (b =T .0) = 6" 6w — 39" 9% (G + Grws = Guvy) b0
= 0" — 9" 9" (Gyup — 3970
This can be verified using the fact that (9*7gyg), = 0,05 = 0 s0 g,89”7 , = —g*7gyp, implying g"” =

(83)

—~ghegBy. 8~ and an identity \/' Il = —g‘ Y guvy from matrix algebra (see appendix A).
Alternatively, if you find the pr oof of the latter identity a headache, you may, quite legitimately, consider
the above equivalence to be a proof of this.

3.3 Generalised energy and momentum continuity

There are two useful forms for the equations of continuity of energy and momentum. The first, and most
general, as set out in §3.3.1, is to exploit the symmetry of space-time; simply differentiating the Lagrangian
density provides the desired equations. The second, is to apply the comma = semi-colon rule 7% , = 0,
assuming, that is, we are dealing with a field with no external influences. This is described, and shown to
be equivalent to the first approach in §3.3.2.

3.3.1 Energy and momentum continuity from the symmetry of space-time

Much as before, to obtain the continuity equations we consider the differential of the integrand in the action
— now /gL — considered as a function of 7:

VI 180a(\/G0L/0,0)
A

oL,

ap T \/-a YR ¢,ﬁ +85(\/§£(¢,0¢7 (b’ f))

O(VF@)L()) = Vs 5 o

b0

= o (Vigets) + %VED)

where, as indicated with the over-brace, we have invoked the equations of motion. Using, on the left side,
O = 5gaa, implies the continuity equation

|02(+/515) = 35(\/3L) | (85)
where the stress-energy tensor is defined, just as before, by

o oL
T%% = — (%asbﬁ +05L
= g™ bt 53/;.

Note that, on the left hand side of (85) 1T%g is to be considered a function of #; that is to say the partial
derivative on the left is with respect to 2® holding the other components fixed. The right hand side, in
contrast, contains the derivative of £ holding the field (and its derivatives) constant.

Equation (85) is conceptually the cleanest way to express the continuity equations. An alternative
expression is

(86)

T80 =3 (95(\IL) — /7, T%): (87)

3.3.2 Energy and momentum continuity from generalised covariance

An simple alternative route, particularly if we are interested only in the effect of the coordinate transfor-
mations, on the form of the continuity equations is to realise that 7% as defined in (86) is a tensor!®. If

" The first term is ¢'®¢.5, as we are assuming the usual kinetic term, while £ is a Lorentz scalar (we will assume) and % is
a tensor.
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the field is not interacting with anything else (other than being affected by gravity) then, in a local inertial
frame, continuity is simply 7%, = 0, since commas and semi-colons are then equivalent. But this is a
tensor equation, so

0= Taﬁ;a = Ta@a i Fa,\/aT’yﬁ — Fvgo‘TO‘7
(88)
=T+ 39% (Gora + Joory — o) T8 — 397 Gopa + Goo8 — Gpacr) T
where we see that many of the connection terms cancel, or
Taﬁ,a == %g#a(gor,[ﬁTTu L gMG',TTT,B)' (89)

An important application of this is to provide the equation of hydrostatic equilibrium, either in a gravita-
tional field or in an accelerated frame, which comes from the spatial components of this equation.

This looks a little different to (87) but is equivalent. To show this, we may note, first of all, using the
identity \/gﬁ/\/g = %g“"gwm that the final terms in (87) and (89) are identical. Secondly, recalling that,
in the first term on the RHS of (87), we are to differentiate £ = —g*¢ ,¢, — V(¢) holding ¢ and ¢ , fixed,
we have 8L = —1 udwg™ g so the first term is /g '95(\/gL) = E\[(jﬁ/\/g = %—(b,uqﬁ’yg“”,ﬁ. Eliminating
J3+/9/+/g using the above identity once more, then gives

VI 05(VIL) = 3905 (97TL+ 997 u0,)
oL |
a¢77—

N
~T7 y+L3

4

— aT o
2 _g(TT, E o (b,
2 B(g g I3 (90)

o | o8
S §gdr,ﬁgua[7—/t

showing that the first terms on the RHS of (87) and (89) are also identical.

4 Inflation in the early universe

4.1 Motivation

The hot big bang model, in which the universe is described by a spatially homogeneous FLRW model, is
successful in many ways. While the ‘Copernical principle’(that the world looks the same to all fundamental
observers) was initially a simplifying assumption, observations have show that it appears to hold to a high
degree when the universe is observed on a very large scale. And the success of big-bang nucleosynthesis
suggests that this model holds back to when the universe was only a second or so old.

But, as we have already discussed, there are some problematic features of these models. One of these
is the [horizon Qroblem] which says that the remarkable uniformity we see on large scales today must be
imposéd acausally. The other is the Iﬁatness prob]eml which is that the observational fact that(Q is currently
not very different from unity)requires it to have been astonishingly close to unity in the distant past. Both
of these problems render the models unattractive since the basic properties of flatness and homogeneity are
not really explained by the theory, rather they must be imposed as finely tuned initial conditions.

To these problems we can add the monopole problem. In grand unified theories (GUTS) massive magnetic
monopoles are predicted to exist. In the hot big bang model, at the time of GUT symmetry breaking (as the
Universe cools through the GUT temperature of around 10'%GeV) these monopoles appear as topological
defects, with a number density on the order of one per horizon size. These objects are a definite prediction
of GUTs, yet their existence in anything like this abundance would be a disaster for cosmology, as they
would have a density today hugely in excess of that observed.

There are also a number of additional unsettling features of the hot big bang model. One might ask what
happened before the initial singularity? What are the seeds of the structure that we see in the Universe?
What explains the baryon asymmetry of the Universe? There are now ~ 10° photons per baryon, which
seems to imply that there was initially a slight asymmetry between baryons and anti-baryons at the one
part in 10° level. Why has the Universal expansion started to accelerate? And why did it start so recently?
What sets the masses of the neutrinos? Which appear to be such that they have only recently become
non-relativistic.
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4.2 The Inflationary Scenario

In the inflationary scenario — which emerged in the late 70s — several of these problems appear to be solved
or at least ameliorated. The essence of inflation is to assume that at early times the Universe passed through
a phase with a strongly negative pressure (i.e. positive tension).

Let us start with the horizon problem. As we have already discussed, this can be traced directly to the
deceleration of the expansion Universe; if @ < 0 then the velocity difference between any two observers, which
is proportional to a, decreases with time. Therefore, going back in time, the relative velocity inexorably
increases and at some finite time in the past reaches the speed of light ¢, and before that the two observers
cannot exchange information or causal influences.

The only way to avoid this is for the Universe to have undergone an accelerating phase with @ > 0 in
its early history. From the acceleration equation & = —(47/3)G(p + 3P/c?)a this requires p + 3P/c? < 0,
or a strong negative pressure P < —pc?/3. This is the strange, and somewhat counterintuitive, feature of
the general relativistic expansion law; just as a positive pressure augments the gravitational deceleration, a
sufficiently strong negative pressure can cause the expansion to accelerate.

At first sight it is hard to see how a negative pressure can arise. For a gas of particles interacting through
localized collisions, the pressure cannot be negative. As shown in Weinberg’s book, for instance, a relativistic
ideal gas must have pressure in the range 0 < P < pc?/3. Also, pressure is the flux of momentum. A particle
moving in the positive = direction carries a positive z-component of momentum, and therefore the flux of
r-momentum passing in the positive z-direction through a surface must be positive.

However, if we consider fields, rather than particles, then the possibility of negative pressure is not at all
unreasonable. After all, the most commonplace field that we can feel macroscopically is the magnetic field.
Anyone who has played with a pair of bar-magnets or pulled magnets off a fridge knows that such fields
have strong tension. However, such fields do not have isotropic tension; there is tension along the field lines
— you have to do work to stretch the field out and create more of it — but in the transverse directions the
opposite is true; as we see from images of the field produced with iron filings the field between a pair of
magnets clearly wants to burst out sideways. And high current solenoids need to be physically constrained
from flying apart. This transverse pressure follows directly from energetic considerations, along with flux
conservation. Imagine you try to confine the field to pass through a smaller area. Flux conservation means
that the field strength must increase inversely with the area, but the energy density scales as the square of
the field strength, so the total energy is larger the smaller the cross-sectional area. A static magnetic field
then has negative pressure along the field lines but positive pressure in the transverse directions.

This anisotropy of the pressure for a macroscopic quasi-static magnetic field is associated with the fact
that electromagnetism is a vector field. As we have seen, however, a scalar field with Lagrangian density
L= f%(bvugb,ﬂ — V(¢) contains a term in the pressure tensor P;; = —d;;V (¢) which is isotropic and which,
for positive potential, is negative.

The only scalar field known to exist is the Higgs field which has a ‘w’-shaped potential with two minima,
which allows the field to undergo ‘spontancous symmetry breaking’, and which led the universe to transition
from a state in which the weak and EM forces were indistinguishable to what we see today. The Higgs
field is not itself thought to be responsible for inflation, but it provided Alan Guth — who was working on
‘orand-unification’; postulated to unify the strong nuclear force as well — and others with the inspiration that
if there was another scalar field it may have provided the negative pressure required to make the universal
expansion accelerate.

The field equation for a classical scalar field with potential V' (¢) — which may be simply a mass term
V = 1m?¢? — in FLRW coordinates is

b/ +3Hb — V2¢/a® + dV/dp =0 (91)

(as discussed more fully below). A possible solution is that the field be spatially homogeneous: so V¢ = 0,
in which case the stress energy tensor, whose components are, in a locally inertial coordinate system tied to
a fundamental observer, are TH, = —¢*¢ , + 6, L, becomes T#, = diag(—&, P, P, P), with energy density £
and pressure P given by

£ =34/ +V(9) (92)
P =18/ - V(4). (93)
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If this field dominates any other contributions to 7", the Friedmann acceleration equation is then

a  4nG 837G -

- 352_<5 +3P) = o (¢*/* — V(e)) (94)

so provided ¢?/¢? < V(¢) (and provided V is positive), the universal expansion will accelerate.

Why would the field satisfy this condition? If we have either a mass term for the potential V' = %m?ng,
or some other positive-index power-law, it is possible that the field started out with some large value but
with q’) = 0, in which case the pressure would, initially, be very strongly negative P = —&, so the equation
of state parameter would be, initially, w = —1. But ¢ would then start to ‘roll down’ the potential, and as
it picks up speed and V' decreases w would increase. A critical ingredient of the field equation here is the
‘Hubble-dampling’ or frictional term 3Hgf§ in the field equation. Depending on the form of the potential (and
the initial conditions) it is possible that the field will reach ‘terminal velocity’ ¢ = —(dV/d¢)/3H (which
is independent of the initial conditions) and, if <i>2 < ?V the equation of state will be w ~ —1, leading to
exponential expansion, and if, moreover, the terminal velocity and field satisfy ]d)\ < ¢, the field will move
relatively little in one expansion time, and the Universe could undergo a large number of e-foldings before
eventually exiting the inflationary phase.

This then is the essential ‘scenario’ of inflation. There are clearly a number of conditions that the
potential (and initial field value and velocity) need to satisfy for this to work successfully. There is also the
big assumption that the field is spatially homogeneous. We will return to the question of how to ‘design’ a
potential that will cause inflation. First we will look in a bit more detail at the solutions of the acceleration
equation.

4.2.1 Solutions for a(7) during inflation

Assuming qZ)Q < ?V we have P = —£ = —pc?, and the continuity equation E = —3H(E + P) tells us that

£ = 0. The cosmological expansion does work against the tension of the field at just the rate required to

keep the energy density constant; for this reason the inflationary universe has been dubbed the ultimate
free lunch.

The acceleration equation is )

% = ——%TFG(,O +3P/c%) = gﬁGp, (95)

with p = £/c? = constant. The general solution of this second order equation is
a(t) = ayetft 4 q_e H (96)

with constants a4+ and
H = /81Gp/3 = constant. (97)

For generic initial conditions, a potential dominated universe, will tend towards an exponentially expanding

solution a o efft.

4.2.2 How inflation solves the horizon problem

The comoving horizon size — defined here as the comoving distance that a photon can travel per expansion
time — is ry ~ cH_l/a. During inflation, H is constant so ry decreases exponentially as ry o e . At
early times during inflation photons can travel great comoving distances but this decreases as time goes
on. In a viable inflationary model, inflation cannot continue forever, but must end, with conversion of the
energy density — all stored in the scalar field — into ‘ordinary’ matter with P = pc?/3, i.e. we must make
a transition from a scalar field dominated universe to a radiation dominated hot-big bang model. Side-
stepping, for the moment, the issue of exactly how this so-called ‘re-heating’ occurs, the overall behavior of
the comoving horizon scale (as we have defined it above) is shown as the solid line in figure 8. This allows
the possibility that the entire Universe was initially in causal contact.

Let’s look at this from the point of view of a pair of comoving observers. These have a constant comoving
separation, as indicated by the horizontal dashed line say. During inflation, the velocity difference between
these observers increases as they accelerate apart, and a pair of observers with initial recession velocity
v < ¢ will at some time lose causal contact with each other once their relative velocity'® reaches the speed

When we say ‘relative velocity’ here we mean the rate at which their physical separation is changing with time.
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Figure 8: The evolution of the comoving horizon scale (heavy solid line) in a Universe which passes through
three phases; an inflationary stage followed by a radiation dominated and then a matter dominated era. The
r-axis is logarithmic, while the time axis abscissa is linear in the inflationary era and logarithmic thereafter.
The diagonal line labeled 7 indicates the Planck length. The horizontal dashed line indicates the comoving
separation of a pair of comoving observers, who start separated by the Planck scale at some time during
the inflationary era. The observers first accelerate away from one another. At the point ‘a’ their physical
separation is increasing with time as drppys/dt ~ ¢, at which point they lose contact with one another.
Much later, inflation ends, the universe starts to decelerate, and drphys/dt decreases. At point ‘b’, when
drphys/dt ~ ¢ once more, the observers can communicate once more. We say their separation exited the
horizon at ‘a’” and re-entered at ‘b’.

of light. If the universe later becomes radiation dominated, the relative velocity will subsequently fall and
these observers can regain causal contact.

For those who feel uneasy with the somewhat hand-waving definition of the horizon size as the distance
light can travel in an expansion time, consider instead the rigorous definition of the comoving distance to a
distant source as a function of the ‘look-back time’ 7=ty —t

T

r(7) = c/ P i (98)

tg—7)
0

In the matter dominated era this increases with decreasing 7 at first, but tends towards a limiting asymptote.
Back in the inflationary era, however, this integral grows exponentially and becomes arbitrarily large.

Coming back to our pair of comoving observers, to the left of point ‘a’ their separation is such that they
can exchange light signals, and, if they did, they would perceive an increasing redshift. Their fixed comoving
separation becomes equal to the horizon scale at ‘a’. At that time their relative redshift becomes infinite.
Subsequently they are unable to exchange signals. At the reheating epoch the Universe starts to decelerate,
and at point ‘b’ the recession velocity falls below the speed of light. The observers then re-appear on each
other’s horizon; they can exchange signals which are received with steadily decreasing redshift.

The separation chosen here is such that it re-enters the horizon during the radiation dominated era.
Larger separations enter the horizon at later times. To set the scale of this plot, The current horizon scale
is ctp ~ ¢/Hp ~ 4000Mpc. Since the comoving horizon scale is proportional to t1/3 in the matter era,
the horizon scale at toq (where the slope of the comoving horizon size changes) is smaller than the current
horizon by a factor ~ 100, or about ~ 40Mpc, roughly the scale of large super-clusters. Originally, inflation
was conceived to happen (or, more precisely, the temperature to which the Universe reheats is) around the
GUT scale, or around 10'6GeV. If so, this plot is highly distorted, as matter-radiation equality occurs when
the temperature is a few eV, the comoving horizon increased by about 25 orders of magnitude during the
radiation era.
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4.2.3 How inflation solves the flatness problem

What about the flatness problem? Recall that departure from flatness is an indication of an imbalance
between the kinetic and potential energy terms in the energy equation

8
a = gﬂ'GpGQ i, (99)

For an exactly spatially flat universe k£ = 0 and these two terms are exactly equal. Now consider a universe
which is initially open say, with £ = —1. During an inflationary phase, the expansion accelerates, @ increases,
as must the potential energy term on the right hand side. Inflation acts to increase, exponentially, the kinetic
and potential terms in the energy equation. Thus even if there is a non-zero initial energy constant, it will
tend to become exponentially small at the end of inflation. Inflation therefore drives the universe towards
flatness; the {2 = 1 state becomes an attractor rather than an unstable state. Another way to look on this is
to realize that in FLRW models — and the inflationary universe is an FLRW model, just one with a weird
equation of state — the curvature scale is a comoving scale. Relative to the horizon scale, the curvature
scale is stretched exponentially. Thus it might be that our universe is open or closed, but that the curvature
scale has been stretched to be enormously larger than the currently observable region of the universe.

What about the monopole problem? These are topological defects of a field. Inflation allows this field to
be coherent over very large scales; up to the initial comoving horizon scale. Provided the universe re-heats
to a temperature less than the GUT scale, monopoles — which have a mass around the GUT energy scale
— will not be effectively created.

4.2.4 The required number of e-foldings

It is interesting to ask, how many e-foldings of inflationary expansion are required in order to establish
causality over the region of the universe (size [ ~ ¢/Hp) that we can currently observe? The answer depends
on the temperature at which reheating occurs. If this reheating temperature is around the energy scale
of grand unification, or T ~ Tgut ~ 10'°GeV, then the temperature falls by about a factor 10% before
the Universe becomes matter dominated at a temperature'” of about a few eV. During that period the
comoving horizon grows as ry o« t/2 « a o 1 /T, or by about 25 orders of magnitude. Once the universe
becomes matter dominated the horizon grows as rj, o t'/% o a!'/2? or by about another factor of 100. The
current horizon is therefore about 10?7 ~ ¢52 times larger now than at the reheating time, so we need at
least about 60 e-foldings of inflation.

4.2.5 The size of the observable universe during inflation

If the reheating temperature is T ~ Tyyr ~ 100GeV (or about 3 orders of magnitude less than the Planck
energy'®) that would say (since % oc ') the expansion time during inflation is about 6 orders of magnitude
greater than the Planck time, putting the horizon scale at about 1072m. We estimated that the universe
must have undergone about 62 e-foldings (€% ~ 10?7) between the time the currently observable universe
left the horizon and the end of inflation, that would say that, at the end of inflation, the current horizon
volume had a physical size on the order of a cm. The result is highly dependent on the reheating energy
scale; an early model gave this size to be that of a grapefruit.

4.3 Chaotic Inflation

Originally, it was imagined that the field driving inflation, the inflaton field, had a w-shaped potential of
the kind involved in spontaneous symmetry breaking with the Higgs field. For reasons we shall not go into
here, such models have fallen out of favor. Instead, most attention is currently focused on so-called chaotic

Y The conversion from eV to Kelvin is that eV is the same as kyT for T~ 10*K.

"8The Planck mass me is obtained by asking what is the mass m such that the gravitational radius r ~ Gm/c® is also
equal to the Compton length i/mec. The result is my = /hc/G ~ 2 x 10~ °gm. Multiplying by ¢? gives the Planck energy
B = /heb /G ~ 10"GeV. The Planck time is t» = h/Es = /Gh/c® ~ 5 x 10~*s. And the Planck length is Iy = cly =
VGh/c3 ~ 1.6 x 10~*m. This defines the ‘natural units’ of mass, length and time in which units ¢, G and h are all numerically
unity. It is convenient to express these all in terms of the Planck energy. Thus my, = Ep/c?, so masses can be expressed as
the equivalent energy. Similarly, t» = h/FEs and [, = ch/E, allow us to express times and lengths as inverse energies. The
Lagrangian density has units of energy density [M/LT?] (or like £f) and contains terms like p?¢* where i is an inverse length.

So the units of ¢ are [\/ML/T?] (or like Ep).



Vi) Figure 9: In the chaotic inflation scenario, the potential function V(¢) is
assumed to be a monotonically increasing function with V(0) = 0. The
potential could simply be a mass term V o< ¢? or perhaps V o ¢*. Here we
will consider, as an illustrative example, V (¢) = A¢* where X is a ‘coupling

/ constant’ describing the strength of the self-interactions of this field. The
idea is that the field started at some initial value away from the origin,

as indicated, and then rolled down, reaching a terminal velocity that is

sufficiently small that the fractional change in ¢ in one expansion time is no

larger than about e = 1/62, in order that there can be sufficiently many e-

foldings so that the current observable size ¢/ Hy can exit the horizon during

inflation.

inflation models in which the field has a potential function as sketched in figure 9. It is assumed that the
field starts out at some point far from the origin, and then evolves to smaller values much as a ball rolling
down a hill. In this section we shall explore what is required in order to obtain a viable inflationary scenario,
i.e. one in which there are sufficiently many e-foldings.

For concreteness, we will consider a field with Lagrangian density

L=—3¢F¢, — At (100)

This is a massless field with a self-interaction term parameterised by the constant A\. The units of \ are
[T2/L3M], but if we work in natural units this is dimensionless, something one can also see from the fact
that the units of the Lagrangian density are those of energy density (or like /23) while that of the field is
like FEp.

Assuming the field to be spatially uniform, the equation of motion is

b+ 3Hp+ 4P =0, (101)

where the last term is the potential gradient and the second term is the damping due to the cosmological
expansion. The energy density and pressure are

£= 2174/52 + At (102)
P= QLCQQBQ — ¢! (103)

and the expansion rate is given by

8nG 8nG [ 1
H? —_—
3¢? 3c2 (

" 2c2

¢+ >\¢4> . (104)

Equation (101) is like that of a unit mass ball rolling down a hill with a frictional force, the coefficient of
friction 3H being dependent on the field and the field velocity through (104). For such a system there are
two limiting types of behavior, depending on the value of the field. In one, the friction is negligible and the
field is in free-fall with ¢ equal to the potential gradient. In the other, the friction is important, the first
term in (101) is negligible compared to the other terms and the field moves at a ‘terminal velocity’ such
that the friction force just balances the potential gradient.

Let’s assume, for the moment, that the former is the case. The effective equation of motion is then

b+ 4NPP® = 0. (105)
The time-scale for changes in the field velocity is
laccel ~ (b/¢ ~ 1/ V ACQ(!)Q‘ (106)
After one acceleration time-scale the field will acquire a velocity

CS -~ (;’étaccel ~ \/—XCéQ (107)
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Squaring this we get, to order of magnitude, the the kinetic energy term in the energy density:

$ /¢ ~ 2D (108)

so the potential and kinetic terms in the energy density are comparable.

Now the condition that the friction should still be negligible is 3H¢ < Ac?¢?®. Using (104), this inequality
becomes '

3H¢ ~3 87?? Ved? < 23 (109)

The dimensionless interaction strength factors out of this inequality, so the condition that the friction be
negligible is simply that the field be sufficiently weak (¢ < +/c*/G). Or equivalently that ¢ be strongly
sub-Planckian.

Conversely, the condition that the friction should dominate — called slow-roll condition — which, of
course, is what we desire, is
A
ek
or that the field strength correspond to a strongly super-Planckian energy.

If so, the friction will dominate and the field will be unable to roll freely down the potential, rather it
will roll slowly down the hill at the terminal velocity

¢ > (110)

¢ = -4 /3H. (111)

Assuming that the inequality (110) holds, what is the equation of state, or equivalently how large is
the positive kinetic energy term ~ qbz/c in the pressure as compared to the potential term V = A¢*/hc?
Squaring the terminal velocity (111) and using the inequality [1? > 87GV/3¢? yields

1. 2,2 46 226 ( 4N —1 4
_¢2:8/\C¢) S8/\c¢ STG AP e (0. v (112)
Je 9H? 9 3 Go¢?
Which tells us that if the slow-roll condition (110) is obeyed, we must have
i s
539" < V(¢). (113)
2c

The kinetic energy terms in the pressure and density are therefore much less than the potential terms and
we therefore have P ~ —pc? (or w ~ —1) as required for inflation to proceed.

As already mentioned, in a viable model, inflation must be sustained for many e-foldings in order to
solve the flatness, horizon problems. In one e-folding, the field will move a distance A¢ ~ (b/H For GUT
scale inflation, where we need ~ 60 e-foldings, we need

Ap_ 6 1
¢ H¢ ™ 60

€. (114)

Using (111) and H? ~ GV/c? ~ GAp*/c? this becomes

b ‘/2 (115)

Thus, the field needs to exceed the Planck value 1/c*/G by at least a factor e~1/? ~ 8 in order to achieve
sufficiently many e-foldings of inflation.

In this model, the field rolls slowly — very slowly at first — down the potential and the universe inflates.
The expansion rate H does not remain precisely constant, but decreases slowly with time. Eventually the
field reaches the value ¢ ~ /c*/G, at which point the friction term H¢ in the equation of motion is no
longer effective and the field starts to oscillate about the potential minimum.

What happens then is that the pressure oscillates, and is no longer strongly negative, so the energy
density that has created itsell in the scalar field will start to decrease. This is not what we want, which is
a transition to a radiation dominated cosmology. So it is necessary that there be coupling of the ‘inflaton’
to other fields, so that the coherent oscillations of the ¢-field can become incoherent and, eventually, one
presumes thermalise.
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The details of this so-called ‘re-heating’ process depends on the details of the interactions between the
field. In figure (8) we have assumed that re-heating happens promptly once the inflaton starts to oscillate.
We have considered a rather specific model above, with a A¢* potential. The main results are not specific
to this choice. Had we instead assumed V' = %(Tchg/fiQ)(Z)2 — i.e. a non-interacting, but massive, field, then

we again find that the ‘slow-roll’ condition is simply that ¢ > /c*/G.

4.4 Discussion

The ‘inflationary scenario” described above purports to be the answer to the question “what came before
the hot big bang?”. It provides a possible mechanism for the creation of all of the matter in the universe
essentially out of nothing. It has the advantage that, starting from fairly generic initial conditions — that
there be some region where the field is has small spatial field variation — the details of the initial state will
get largely erased and the universe will be prepared in the state needed — nearly exactly spatial flat on the
scales available to observations — as the, otherwise seemingly finely tuned, initial conditions for the following
radiation phase.

All we require is that there be a field with some potential that starts off at a sufficiently high value; the
initial value of the field velocity qﬁ is largely irrelevant, since the cosmic drag term rapidly reduces (b to the
terminal velocity.

As we shall discuss later, the inflationary scenario also creates density fluctuations which can seed the
structures we see in the distribution of galaxies and in the cosmic microwave background. The amplitude
of these fluctuations is strongly model dependent, but the prediction is for fluctuations with dependence on
wavelength very much like that which seem to be required.

These results make the inflationary model highly attractive. On the down side, one has to invoke a
new field, the inflaton, precisely to obtain these desirable results. Initially, the development of this field
of research was strongly linked to developments in fundamental particle physics — spontaneous symmetry
breaking etc. — but the subject has now taken on a life of its own. While we have used GUT-scale inflation
in order to derive e.g. the number of e-foldings, there is really no need to assume this (though reheating to
super-GUT temperatures would be problematic). Indeed, studies of the expansion rate using supernovae
have suggested that the universal expansion is now accelerating; it would seem that we are entering another
inflationary phase. The ideas described above can readily be re-cycled to describe late-time inflation by
choosing appropriate parameters (specifically, this requires that the fields be very light). The inflaton field
must be coupled to other fields in order to allow re-heating, and in principle this allows empirical tests of
the theory. However, the requirements on the form and strength of the interaction are not very specific, and
the energies required to make GUT-scale inflatons is beyond the reach of terrestrial particle accelerators.
Aside from the ‘predictions’ of flatness, homogeneity and density fluctuations — all of which were observed
before inflation was invented — it is hard to find testable predictions. One hope is that the inflaton field
and its potential will emerge as the low-energy some more fundamental theory which unifies all of the forces,
including gravity. This is an area of much activity at present, but hopefully will explain why there is an
inflaton; why it has the potential it needs; why the minimum of the potential is at zero energy density and
SO on.

There is another rather unsettling aspect of the inflationary scenario, which is that we had to assume that
the field is highly homogeneous. Many discussions of the subject simply argue that any inhomogeneity will
be stretched to super-horizon scale in order to justify this assumption. Others invoke ‘anthropic’ arguments;
the idea being that even if it is very unlikely to have a region which is sufficiently smooth to inflate, it
will end up becoming very large, so it is not unreasonable that we find ourselves in a region which inflated
(particularly if it is necessary for the existence of life for the Universe to have lived long enough to make
stars etc.). This seems to me to be overly complacent. Recall that in figure (8) the boundary of the domain
which we can describe without a theory of quantum gravity is not a fixed time ¢ = t;,, rather the time at
which a region starts to be describable classically depends on the size of the region. Each time the universe
doubles in size, each Planck-scale region gets replaced by eight new Planck-scale volumes. Predicting the
‘initial” state of such regions requires a quantum theory of gravity, but it is commonly imagined that the
classical universe emerges from some chaotic space-time foam. Now even if this process were to generate
quite small occupation numbers for these Planck-scale modes, this would give a positive contribution to the
pressure which would stop inflation taking place. If we want to invoke inflation then we must assume that
this quantum-gravitational process produce an almost perfect vacuum.

There is one other peculiar feature of a potential dominated medium that merits being mentioned. We
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have developed the theory here simply as we did for the FRW models, with the sole modification being

the adoption of the equation of state P = —pc?. There is, however, an important distinction to be drawn
between such a medium and a fluid with P = pc®/3 or P = 0 say. In the latter cases there are a preferred
set of observers — the ‘comoving observers’” — for whom the stress energy tensor takes the symmetric

form T* = diag(pc?, P, P, P). At each point in space, this zero momentum density condition picks out a
unique velocity, and this gives us a unique ‘congruence’ of comoving observers who are, in our Universe,
expanding away from one another. In the inflationary phase, in contrast, when P = —pc? to high accuracy,
there is no such unique congruence of comoving observers, since with P = —pc? the stress energy tensor
has the same form in all inertial frames. One can construct a set of test particle world-lines which are
exponentially expanding, as we have done here, and these observers would say that mass-energy is being
created spontaneously by the universal expansion. However, one can also find a set of test particles whose
world-lines are initially converging (the acceleration equation only tells us that @ > 0, and one can have
test particles with a < 0 initially). Such observers would not agree that mass-energy is being created. One
can also construct a congruence of world-lines which are tilted (i.e. in a state of motion) with respect to
our comoving observers, and they would also see vanishing momentum density for the scalar field. The
usual response to this is to argue that the pressure is not precisely P = —pc?, rather there will be a small
correction, either due to the field velocity ¢ or due to the presence of other matter fields, which will break
the exact invariance of 1T"” under Lorentz boosts. The other thing that breaks this symmetry is the field
itself. It is like a bit like a clock in that it rolls down the potential and when it reaches the value ¢ ~ /c*/G,
the equation of state changes. And that determines the hypersurface on which inflation ends.

Finally, coming back to the question of initial conditions, we noted that with the inflationary equation of
state, the general solution for the expansion factor is the sum of exponentially growing and decaying terms
(96), and we said that generically the former will come to dominate the behaviour of a(t) at late times. But
would that not suggest that the decaying term would be expected to dominate at early times, and that the
Universe would be expected to have undergone a ‘bounce’?

In the context of the models developed here, however, that would be a misconception. There is a
quantitative difference in the behaviour of a scalar field in a contracting universe as compared the the
expanding model considered above. In the latter case, H is positive and the term 3H</3 in the equation of
motion is a friction, and the evolution of the field will relax towards the slowly rolling terminal velocity
solution. In a collapsing phase H is negative, so we have negative friction. In this case the slowly rolling
solution — while possible, since the system as a whole is time symmetric — is an unstable one. For generic
initial conditions going into a ‘big-crunch’” we do not expect the field to become potential dominated, and
so the inflationary equation of state will not arise. This is discussed very nicely in Zel’dovich’s My universe

monograph.

5 Cosmological structure from scalar fields

We have previously studied the evolution of density perturbations from some given initial state we now
explore how the initial seeds for structure may have arisen. We first consider the ‘spontancous’ generation
of fluctuations from the effect of non-gravitational forces in the hot big bang model, and show that it is very
difficult to generate large-scale structure in this way. We then consider the generation of density fluctuations
from quantum fluctuations in the scalar field during inflation and finally we consider topological defects.
Before embarking on these calculations, it is worth describing what seems to be required observationally.
In fact, long before inflation and when cosmological structure formation was still a relatively immature
subject, Edward Harrison and Jacob Zel’dovich pointed out that if the initial spectrum of fluctuations had a
power-law spectrum!® P,(k) o k™ extending over a very wide range of scales then it should have index n = 1.
The argument is that for a power-law, the fluctuations in the potential, and therefore in the curvature, also
have a power law spectrum. For most spectral indices, the curvature fluctuations will either diverge at small
scales or at large scales. This would result in small black-holes if n is too large, or would lead to the universe

YA field f(r), assumed to be periodic within a very large (fictitious) scale L, can be synthesised as f(r) = 3, fue™™
where the modes have spacing Ak = 27/L. The mean squared field is (f?) = ,~* fds'r‘fg(r) = > fifii. replacing >, ... =
(Ak)™3 [dPk... gives (f?) = (2_77)’1/3 [d*k Py(k) where the power-spectrum - for an isotropic random field — is Pr(k) =
L3*(ficf5). The ‘smoothed’ field [ (r) = [d*'W(x')f(r —r'), where W (r) = W(r) is an ‘averaging window’ of size ~ R, has
T e = Wicfi, s0 its mean square is (7?{) = (2m)? [d®k|Wi|? Py (k) ~ (k*Pf(k)) g1 /r- Tor a flat power spectrum Pr(k) oc k™
with n =0, <7?3>]/2 x 1/R*? x 1/v/N. So the spectral index n = 0 is what one would get for the density of particles scattered
at random; a so-called ‘Poissonian’ or ‘white-noise’ process.

29



being highly inhomogeneous on large scales if n is too small. The ‘happy medium’ (in which the curvature
fluctuations diverge at both small and large scales, but only logarithmically fast) is that for which the root
mean square density fluctuations scale as 6p/p oc 1/A?, so the Newtonian gravitational potential fluctuations
dp ~ (H/\)Q(Sp/p are independent of A\. For a power-law power spectrum, the variance per octave of wave-
number is ((3p/p)%)r ~ k*Py(k) o< k3t oc A=+ Thus, for n = 1, the potential fluctuations are scale
invariant. This is known as the Harrison-Zel’dovich spectrum. While somewhat philosophically motivated,
this kind of spectral index has much to commend it. Richard Gott and Martin Rees had argued that the
structure we see on scales of galaxies, clusters and super-clusters seemed to require an spectral index for
the perturbations emerging after zeq of n ~ —1. This is not the Harrison-Zel’dovich index, but allowing for
the suppression of the growth of small scale perturbations during the physical processes described above
during the era around zeq, which we will discuss later, these are consistent. The real clincher for the n =1
spectrum came with the detection by COBE of roughly scale invariant ripples in the large-angle anisotropy
of the CMB. Normalizing the spectrum to cluster or super-cluster scale structures, these fit very nicely to
an extrapolation to larger scales using the Harrison-Zel’dovich spectrum.

5.1 Spontaneous generation of density fluctuations

Consider an initially homogeneous universe and let the pressure spontaneously become inhomogeneous (this
might happen during a phase transition in the early universe, or at much later times when stars form and
explode). There will then be non-gravitational forces will generate density perturbations. We saw how
density perturbations grow, by a process called ‘gravitational instability’; could it be that the structure we
see in the universe originated this way? The answer is no; structure ‘seeded’ in this way produces too little
power on large scales.

For a spontaneous cosmological phase transition the pressure fluctuations should be uncorrelated on
scales larger than the horizon scale at that time. Similarly, a natural model for the pressure perturbation
from randomly exploding stars has a flat power spectrum and the fluctuations in the pressure, when averaged
over a large volume containing mass M, falls off as M~/ or as 1 /V'N where N is the number of perturbing
‘cells’. What is the amplitude and spectrum of mass fluctuations on large scales generated by such a
process? Naively, one might imagine that there might be root-N perturbations, with N the number of
independent fluctuation regions, giving dp/p oc M~1/2. Alternatively, one might imagine there would be
‘surface fluctuations’ giving dp/p oc M~2/6. Now it is true that if we measure the density within a sharp-
edged top-hat sphere, then there will be fluctuations in the mass of this order, but, it turns out, the
fluctuations in growing modes will be much smaller than this; the amplitude of the growing mode is in fact
Sp/pox M~T/S,

Let’s first obtain this result from a Newtonian analysis. What we shall do is compute the perturbation
to the large-scale gravitational potential dp —— since this is associated with the growing mode density
perturbations — from which we can obtain dp/p. Consider first a homogeneous expanding dust-filled
cosmology containing an agent who can re-arrange the surrounding matter, but can only influence material
at distances r < R (see figure 10). What is the perturbation to the Newtonian potential at large scales?
The potential is

) op(r’)
do(r) = G/d3v~/ F (116)
where the integrand vanishes for 7/ > R. At large distances r > R, we can expand the factor 1/[v/ —r| as
1 . AT | 120 v — 1/ x/\ 2
%|r/—r| =(r-r—(2r -r—r .r)) "2 = : 1_547"2 i (117)

Making a Taylor expansion gives

1 1 r-rv' 1 /vy (i 7]
|1"_/“—1°|_;<le e +§< r? Y 4 e LL1E)

Using this in (116) gives an expansion in powers of 1/r. The coefficient of the leading order term (for which
§p ~1/r)is [d® §p(r"). Thisis the monopole moment of the mass distribution, but this vanishes by virtue
of conservation of mass. The next term has §p o< 1/r2, and has coefficient proportional to - [ d*r" sp(x')r’,
which is the dipole moment. This vanishes by virtue of momentum conservation. The next term has
dp 1/7‘3 with coeflicient proportional to the quadrupole moment. The does not, in general vanish; the
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Figure 10: Illustration of the type of perturbation that can be generated by a physical process that operates
locally (within region delimited by the dashed circle). On the left is a monopole perturbation. This has a
net excess mass and would generate a potential perturbation at large scales dp o< 1/r. Such a perturbation
is not allowed, since it requires importing mass from large distances; if one is constrained only to re-arrange
the mass within the dashed circle, then for a symmetric mass configuration the net mass excess must vanish.
In the center is shown a dipole perturbation with an over-dense region on the right and an under-dense
region on the left. Such a perturbation would generate a large-scale gravitational potential 6 oc 1/72. The
net mass excess inside the dashed circle is now zero, but such perturbations are still now allowed as, in
order to generate such a perturbation, one would need to impart a net momentum to the matter. On the
right is a quadrupole perturbation. Such a perturbation can be generated by a local physical process while
still conserving mass and momentum. A quadrupole source generates a large-scale potential perturbation
8¢ oc 1/73; this falls off much faster than for an ‘un-shielded’ monopole perturbation.

agent, can, for example, rearrange the matter into a ‘dumb-bell’ shaped configuration without exchanging
any mass or momentum with the exterior (see figure 10). If the mass contained within the perturbation
region is AM, the large-scale gravitational potential is dp(r) ~ GAMRQ/T‘?’ where R is the scale of the
fluctuation region and this is smaller than the un-shielded monopole term GAM /r by two powers of R/r.

Now consider a multitude of such agents, with separation ~ R, each of whom re-arranges the surrounding
matter in accordance with mass and momentum conservation, but otherwise in a random manner, such
that different fluctuation regions are uncorrelated with each other (see figure 11). The mean square large
scale potential — averaged over a region containing mass M, or size r ~ (M/p)'/3 — is then the sum
of N ~ (r/R)®> ~ M/AM quadrupole sources adding in quadrature, so the root mean square potential
perturbation is

GAMR?
Sonr = ((50)2) M2 ~ VN x T — M (119)

since both /N and 73 are proportional to M.

Thus it is the fluctuations in the potential dp that form a white-noise process. Now, for the growing
mode, the potential and mass — or density — fluctuations are related by dp ~ GSM /r where SM ~ M x dp/p
is the fluctuation in the mass. So we can write 5 ~ (GM/r) x dp/p. But M ~ pr3, so GM/r ~ Gpr? ~
H?r%, s0 6 ~ (Hr)?6p/p where Hr is the Hubble velocity at separation r. The key point is that, since
2 oc M?/3, the root mean squared growing mode density perturbations induced by this kind of small-scale
local rearrangement of mass has rms

5p/poc M~T/S, (120)

Put another way, this spectral index of the density fluctuations is?® n = 4 as, with P,(k) o k%, the mean
square fluctuations as ((5p)?), ~ (k3Pp(k))k~1/7, o =7 oc M~7/3. The mass distribution on large-scales
at late times is much smoother than the ‘root-N’ mass fluctuations, and smoother even than the ‘surface
fluctuations’.

The argument given above is Newtonian and assumes conservation of mass. Do these conclusions still
hold with fluctuations of the relativistic plasma? For example, consider a universe in which the process
of baryogenesis is spatially inhomogeneous. If the photon-to-baryon ration — the specific entropy that is
— is an incoherent random function of position, this will generate an initially isocurvature perturbation
such that the number density of baryons is a white-noise process, but with the initial density fluctuation

20An alternative, and simpler, way to reach this conclusion is to note that Poisson’s equation V2§ = 4x(dp becomes, in
Fourier space, the algebraic equation —k?pi = 47Gpi, so the power spectra (defined as Px (k) = L¥(X1X})) are related by
Py(k) = (4rG) 2k*P,. Thus if P,(k) o k%, P,(k) o< k*.
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@@@@@@@@@@ Figure 11: Schematic illustration of the type of den-
sity inhomogeneity than can be produced by local re-
@@@@@@@@@@ arrangement of the matter. Each perturber generates
a large-scale potential ¢ ~ GAMR?/r3, where AM

@@@@@@@@@@ and R are perturber mass and size. These add ‘in
quadrature’, so the RMS potential fluctuations, when

@@@@@@@@@@ averaged over a region containing N perturbers is
VN times larger than the effect for a single region.
@@@@@@@@@@ With N o« M o 73, the RMS potential fluctuation is
0 \/_]W/TB o r~3/2, This is a ‘white-noise process’,

@@@@@@@@@ with a power spectrum P,(k) o |dpk|?> = constant,
@@@@@@@@@ for which the mean square potential fluctuations are
~ (K*Py(k))pr/r o< 1/r3. Poisson’s equa-

@@@@@@@@@@ tlon V25p = 47 Gép becomes, in Fourier space, alge-
braic, so the growing mode density perturbations are

@@@@@@@@@ Spk ~ G k0 and the power-spectrum of the mass-
fluctuations is therefore P,(k) ~ (|0pk|?) o k%, with
®®@@@@@@®@ spectral index is n = 4, and the RMS mass fluctua-

tions dp/p oc M~7/6,

in the baryons being compensated by the radiation density. Now as the universe expands the radiation
will redshift away and will eventually become negligible. At late times then there will be fluctuations in
the net proper mass contained within any comoving region with rms amplitude scaling inversely as the
square root of the number of fluctuation regions, or dp/p oc M~/2. Does this not conflict with the A7~ 7/6
rule? Not necessarily, since we do not know what fraction of these perturbations is in the growing mode.
To resolve this, recall the behavior of spherical perturbations. To generate a decaying mode we delay the
‘bang-time’ keeping the energy constant, and the proper mass contained in the perturbation is fixed. In the
growing mode we perturb the binding energy ¢. The gravitational mass of the perturbation must equal the
unperturbed mass, but as the binding energy is negative, we must actually have a slight enhancement of
the net proper mass M ~ —Mdp within the perturbation. Thus, the fluctuations in proper mass within
comoving regions (which scale as M~ 1/2 i1 this incoherent isocurvature model) measure dp ~ (H 2>\2)6gmwgng
and we recover the dp/p oc M~7/% behavior for the growing modes.

The large-scale growing perturbations produced by small-scale rearrangement of mass are therefore very
small and this effectively excludes the possibility that the large-scale structure results from curdling of the
universe during a phase transition at early times because the horizon size is small then. It would also
seem quite diflicult to produce the largest scale structures seen from hydrodynamical effect of supernovae
explosions (though the fact that a simple estimate of the net energy released based on the abundance of the
results of nuclear burning in stars does not fall very far short of what is desired is tantalizing). In any such
scenario, accounting for the large-angle fluctuations in the CMB is very difficult indeed, since the prediction
is for temperature fluctuations falling off as 67/ ~ dp o< 73/2.

5.2 Density fluctuations from inflation
5.2.1 Introduction

A much more promising way to generate density fluctuations is from zero-point quantum fluctuations of
the scalar ‘inflaton’ field driving inflation. In the inflationary scenario, the field is assumed to be spatially
uniform, and it is necessary that it have |V¢|?/a®> < V() in order to create accelerated expansion. But
the field cannot be perfectly smooth; there must, at the very least, be zero-point quantum fluctuations of
the co-moving Fourier modes ¢y.

The wavelength of such a mode — being a comoving distance — is a horizontal line in figure
8. It ‘appears’ when aX is of order [ — this being the boundary of our ignorance — at some time during
inflation, when it is sub-horizon scale, and the physical wavelength a) increases until it exits the horizon.
In models like chaotic inflation, as we shall see, these modes are effectively massless, so they oscillate with
frequency wy = |k|/a and with, initially wy > H, so they evolve adiabatically. If they are assumed initially
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to be in the ground state |n = 0) they stay that way, but only until horizon crossing, at which time the
frequency becomes of order I, and adiabaticity no longer holds, and the occupation number will change.
Nonetheless, to order of magnitude, the amplitude of the fluctuations can be estimated as being roughly
that for zero-point fluctuations.

A key feature of inflation is that it is very nearly ‘scale-invariant’, so different modes, corresponding to
structures of different scales, must evolve essentially identically. Thus a rather generic prediction of inflation
is that there be fluctuations in ¢ at horizon crossing that are scale invariant.

The picture that is employed is that different regions — say the positive and negative halves of a wave —
will then evolve independently — as they are then super-horizon scale — but starting from slightly different
points on the potential curve (figure 9). The field rolls down the potential until ¢ ~ +/c*/H at which
time the universe reheats and the energy of the scalar field is converted to that of the thermal plasma
of the hot big bang. But a region where d¢ was positive at horizon crossing will have had slightly more
e-foldings of expansion. So it will occupy a larger proper volume than the region where d¢ was negative.
And more matter will have been created there. And, if we consider a perturbation of size that re-enters
the horizon in the matter dominated era, there will be more or less proper mass depending on whether d¢
was positive or negative. The way that the — originally homogeneous — space-time accommodates this is by
‘herniating’ slightly; a region with a proper mass excess does not appear as a ‘monopole’ source for an external
gravitational field. Rather the space there has slightly positive curvature — or a slightly negative Newtonian
gravitational potential ¢ — and, to the outside world, its gravitating mass is unchanged. The upshot of
this is ripples of the dimensionless potential ®y = ¢y /c? — which are equal to the density perturbation pi/p
when the perturbation region re-enters the horizon — that are roughly equal to ¢x /¢ when the scale A left
the horizon.

This was first worked out — in the few years following the invention of the inflationary scenario — by several
groups and individuals, who showed that inflation predicts density fluctuations re-entering the horizon with

amplitude

F o frE

— 121
S (121)

where H and gb are evaluated as the perturbations leave the horizon during the inflationary era. Since, H
and ¢ are slowly varying during inflation, this naturally predicts seeds for structure formation close to the
preferred Harrison-Zel’dovich form.

Below we will flesh out some of the details in the context of the chaotic inflation model with a V(¢) = A¢*
potential considered earlier.

5.2.2 Fluctuogenesis in chaotic inflation

Since we are dealing with small amplitude fluctuations, the natural approach is to decompose the field into
spatial Fourier modes, and compute the evolution of these separately. As shown in figure 8, such a mode,
being fixed in comoving wavelength, first appears, or rather becomes describable without a quantum theory
of gravity, when the physical wavelength is on the order of the Planck length. As already discussed, for
inflation to take place we require that the field fluctuation at that time be in the vacuum state to very
high accuracy. This then sets the initial conditions; the initial occupation number for inflatons of this scale
must vanish. A detailed calculation of the evolution is extremely technical, involving such tricky issues
as the nature of the vacuum in curved space-time, as well as requiring a full general-relativistic treatment
for the modes while they are outside the horizon. Here we shall only give a rather hand-waving sketch of
the important processes and thereby physically justify the form of the key result (121). We will show that
the requirement that the final density fluctuation amplitude agree with that required observationally puts
a strong constraint on the strength of the interaction term (or mass term) in the inflaton potential. We
will also discuss how inflation predicts, in addition to density fluctuations, fluctuations in all fields, and, in
particular, predicts a stochastic background of gravitational waves. This provides, potentially, a powerful
test of the theory.

First, we need to establish the nature of the fluctuations about the large-scale average inflaton field
during inflation. We will denote the ‘background’ field by ¢g, and the fluctuations, which, as we shall see,
are relatively small, by ¢;. The general equation of motion for the inflaton field is

e . 2 .
b+ 3HG— V2 + 4276 = 0, (122)
a
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where V denotes the derivative with respect to comoving coordinates. If we decompose the field as ¢ =
oo + ¢1, where the ‘background’ field ¢ is assumed to have V¢g = 0, and make a Taylor expansion of the
interaction term assuming that the fluctuations about the background are relatively small (i.e ¢1 < ¢g) then
the equation of motion for the perturbation, which we will not assume to have vanishing spatial gradient, is

.. . ‘2
1+ 3Hd1 — V21 + 12203261 = 0. (123)
a

Comparing this with the equation of motion for a free massive scalar field

m2ct

h2

2
g fﬁv%ﬂ ¢ =0. (124)

we see that the fluctuations about the background field behave like a free field with mass

= \/12\R2g} /2. (125)

The Compton wavelength for the inflaton fluctuations is

= h/mc (126)

which we can compare to the horizon scale ¢/H. With H ~ /Gp = \/GE/c® ~ \/GAE/c2, the ratio of
these is
‘o [CR
o/H V&

Therefore, if the field is large enough to allow inflation (¢ > +/¢*/G) then A\¢ > ¢/H; the Compton
wavelength is much larger than the horizon. Thus, to a very good approximation, the classical equation
governing fluctuations ¢y is that of a free, massless field. This result is not specific to the V o ¢* form for
the inflaton potential; the same is true for a V o ¢? theory or for other polynomial potentials.

Next we consider ¢ to be a superposition of comoving Fourier modes: ¢;(x,7) = >y ¢ (7)e x>, We
don’t need to put a subscript ‘1’ on ¢y since the ‘background field’” ¢g has vanishing spatial fluctuations, so
if we refer to ¢y it is obvious we are talking about ¢;. We are assuming as usual here that ¢ is periodic
within some large (fictitious) comoving volume L3, so the modes live on a lattice of spacing Ak = 27/L.
The reality of ¢; means that the complex mode amplitudes must be symmetric: ¢_x = ¢y.

These mode amplitudes obey, classically, a damped oscillator equation gbk + 3H<z§k (2k|?/a?)py = 0
With the transformation ¢ = <pk/a3/2, we find (with a o< efft) that ¢y = —QQ( ), with () =
V/2k[2/a? — 3H2/4. When the mode is within the horizon (i.e. A = 2ma/lk| < c/H) this is an undamped
oscillator with a real frequency that is slowly tlme varying in the sense that Qi < Q As is well known, such
an oscillator evolves such that the ‘energy’ pk is proportional to €y, from which we find that the ‘envelope’
of the oscillations @y x /@ so ¢k o 1/a and the true energy density varies as & ~ wi¢f o« 1/a%; ie. just
like a gas of massless — or highly relativistic — particles whose total number is conserved. After leaving the
horizon this suggests an exponential decay of ¢y with time (power-law in @), but that is a little misleading,
as the small neglected “mass’ term needs to be considered. In the regime a/|k| > ¢/H it is better to realise
that the solution of the full equation tells us that starting at some ¢ -+ d¢ gives a solution which is a time
translated version of what we get starting at ¢.

Quantum mechanically, the essential assumption is that, initially (shortly after appearing at the Planck
scale, perhaps), the harmonic oscillator of which ¢y is the classical displacement is in its ground state. I.e.
in the energy eigenstate with energy?! F = hwy /2. And as long as a/|k| < ¢/H, adiabaticity ensures that
the oscillator will remain in the ground state. One can then readily calculate the expectation (O] |fk|? |Ok).
For the oscillator with classical Hamiltonian H(p, ¢) = 3 (p*/2m+mw?¢®) we have (0] ¢* |0) = +h/mw. Here
we have a classical Lagrangian Ly (¢, dx) = L3a®L = %L3a3(|gf§k|2/cz — (|k|2/a?)|¢xk|?), so the canonical

momentum is py = 9L/ 6@5§ = L3a3¢y /c? and hence the Hamiltonian is

(127)

Hi(pi, $x) = piedx — Lic = 5(|pil*/ L2 + LPalk || (128)

21We can think of only the modes in one hemisphere of k-space as being independent as the others are determined by the
symmetry. But each of the independent modes has a complex amplitude, with two degrees of freedom, so the net result is the
same as assigning F = hwi /2 to all of the modes
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so just like H(p,q) with m = L3%®/c? and mw? = L3a|k|?. With wy = ¢|k|/a that means mw = L3a2|k]|/c
and hence
(Ok| lpxc|® |0x) = 3h/mw = The/L3a?|k| = Yhic?/L3aPwy. (129)

Adding up the variance from all the modes we get

: % " >
(6D =D (Oullowl o) = (;) /df”k (Ol 16wl 03) = § (g5)° [dh 22 = oA Jauncwne (130)
k

where we note that, as required, the fictitious periodicity scale L does not appear the in the final result?2.

This is nice. But one might reasonably object that it is a bit of a cheat. After all, with these energy
eigenstates, the expectation of the mode amplitude ¢y vanishes. So we can’t really interpret the square
root of this as giving the classical displacement ¢; we should add to the background field ¢. This is where
the non-adiabaticity comes to our rescue. As the mode leaves the horizon this breaks down, and there will
be a non-vanishing amplitude for a mode to be in [1y), |2k) etc.. Just as in the hydrogen atom, where the
energy eigenstates have, individually, vanishing current, and so do not radiate classically, an atom with an
electron in a superposition of two eigenstates |n) and |n + 1) say has a non-vanishing expectation value for
the current (j(t)) = [d3r(ihg/m)(V¢* + c.c.) for the current, which, moreover, for large n oscillates at
just the classical frequency of an electron orbiting a proton with angular momentum nh. This, along with
the assumption that the amplitude to be in the excited states is not small, is, I think, what justifies the
claim that, at horizon crossing, there is a non-vanishing expectation value for the field, whose square can
be estimated using the above, and by adding up the contributions to (| ¢?|) from a logarithmic interval of
frequencies (so using f dwy wi ~ wﬁ above). With wy ~ H at horizon crossing, this gives

(#7) ~ —. (131)

The prediction then is for inflaton field fluctuations at horizon exit of amplitude d¢ ~ /hH?/c. To
understand how these couple to density and curvature fluctuations at the end of inflation, and subsequently
to density fluctuations at horizon re-entry, consider first a region where d¢ happens to be zero. This region
will inflate by a certain number N ~ Hgb/qt} of e-foldings, and will then re-heat to a density determined
solely by the nature of the inflaton potential and its couplings to other fields. Now consider a region of the
same initial size, but where the field fluctuation happens to be positive. The field in this region starts up
‘higher up the hill’, so this region inflates for slightly longer, and ends up occupying a slightly larger volume
when it re-heats (to the same density as the unperturbed region). The extra expansion factor is exp(Hdt),
where dt is the time taken for the field to roll from ¢ = ¢y + 5¢ to ¢ = ¢o. This is just 6t = d¢/¢. For
small ¢ we can expand the exponential as exp(Hdt) ~ 1+ H5t ~ 1 + H5¢/¢. This is the excess of volume
occupied by the perturbation region as compared to what it would have been had d¢ been zero; clearly to
replace a given volume in the background model by a slightly larger volume requires that the perturbed
region have a slight positive spatial curvature, which, as we have seen, can be related to the Newtonian
potential fluctuations. But this needs to be treated with caustion, as we are talking about the spatial metric
on a surface of constant density (or constant H). A more robust argument, I believe, is to consider for a
large-scale perturbation which enters the horizon after matter domination, for which there will be an excess
of proper mass within the perturbed region §M /M ~ Hét, but the universe outside should, by causality, be
unaffected, so the proper mass has to be in a slight potential well, as we argued above. This is admittedly
a little hand-waving, but provides at least a justification for the essential result, which is that there will
emerge, at late times, scale-invariant growing-mode density perturbations with horizon-crossing amplitude
given by (121).

The late-time density fluctuation amplitude is therefore set by the values of H and ¢ at horizon exit.
Since the field will be rolling slowly at the terminal velocity ¢ = —4\@3 /3, it follows that H?/$ oc H3/2. As
this changes steadily, but rather slowly, with time, and therefore with comoving horizon-exiting wavelength,
the prediction is for a spectrum with index n close to unity but with what is called a slight ‘tilt’. Note that
the modes we can probe observationally are, on a logarithmic scale, close to the current horizon scale. If
the latter exited soon after the start of inflation, we might expect to see some impact of this on large-scale
CMB anisotropies, but there is no strong indication of these. As further consequence is that since the initial
‘zero-point’ fluctuations are statistically independent, so also will be the complex amplitudes for the density

e . . . v ey . -
“Different people use different conventions for the definition of ¢x, but they will agree on the final mean squared value.
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fluctuations; i.e. the prediction is that the density perturbations will take the form of a Gaussian random
field.

Observations of the microwave background and/or large-scale structure tell us that the density fluctuation
8y at horizon re-entry is a few times 10~°. Matching this requirement places a constrain on the interaction
strength parameter \ (or its equivalent for other choices of the inflaton potential form). Using H? ~ GE/c? ~
GAph/c* and ¢ ~ Mg/ H we have

2 2\ 3/2
Sy ~ EH—.~<%> A2, (132)

Now the first factor must be greater than unity for inflation to take place. In fact, we found that we needed
b 2 \/ct/eG where € is the inverse of the number of e-foldings required to solve the horizon problem.
This means that the pre-factor on the right hand side of (132) is around 100 (though the precise value is
dependent on the energy scale of re-heating), and therefore a viable model must have an interaction strength,

expressed in natural units,
pV e (133)

so one might worry about the naturalness of this, or how this small number gets explained.

Finally, while we have focused on the fluctuations in the inflaton field, since it is these which give rise
to density fluctuations, the first part of the argument here can be used to predict the horizon-exit value of
the amplitude of any fields which are effectively massless during inflation. In particular, the theory predicts
that there should be fluctuations in the graviton field — gravitational waves that is — with amplitude on
the order of the expansion rate in units of the Planck frequency. The prediction for these is much less model
dependent; the amplitude just depends on the energy scale of inflation; the higher the energy the larger
the amplitude. These waves are ‘frozen-in’ which the perturbation is outside the horizon and then start
to oscillate on horizon re-entry. The announcement of a detection of the signature of these waves in the
polarisation of the CMB in 2014 sparked considerable interest, as it seemed to indicate inflation at around
the GUT scale, but it was later shown that the signal can be attributed to dust in the Milky Way. A high
priority for future measurements of the microwave background anisotropies is to measure the strength of
these waves.

5.3 Self-Ordering Fields

An alternative possibility is that the seeds of structure may be due to self-ordering fields. The idea here is
to have some scalar field or such-like which is initially in a highly disordered thermal state, but which has
potential function of the kind invoked in spontaneous symmetry breaking. As the universe expands, the
field temperature decreases and eventually it becomes energetically favorable for the field to fall into the
minimum of the potential function. Such fields try to ‘comb themselves smooth’, but are frustrated in this
due to the formation of topological defects. The most common example of this phenomenon at low energies
is a ferro-magnetic material which, if cooled from high temperature, will undergo a phase transition and will
develop domains which are bounded by walls. In cosmology, as at low energies, the character and evolution
of such systems depends critically on the dimensionality of the field involved. Here we shall consider first
1-dimensional fields, which give rise to domain walls, but, unfortunately do not seem to be consistent the
observed state of the universe. We then consider 2-dimensional fields, which, as we shall see, give rise to
cosmic strings, and which seemed at first to be a promising mechanism for seeding cosmological structure,
but the simplest model has now been ruled out observationally.

5.3.1 Domain Walls
Consider a real scalar field with, as usual, the Lagrangian density
; Loy 1 2
£(8,6,99) = 538 ~ 5(V9) = V(9) (134)

with potential
V(g) =Mo" — 6p) (135)

as sketched in figure 12. This field has a self-interaction parameterized by the coupling constant A (which,
as before, is dimensionless if we measure the field in units of Planck energy). The potential has asymmetric
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Figure 12: The potential function for a real scalar field involved in the generation of domain walls.

minima at field values ¢ = +¢y, the solutions of dV/d¢ = 0, and its value at ¢ = 0 — an unstable maximum
—is V(0) = Ag¢.

In thermal equilibrium at temperature 7', the state of the modes of the field are incoherent, with energy
per mode By = (ny + 1/2)hwy with ny = ("™x/kT — 1)=1. If the field is effectively free and massless,
the dispersion relation is simply wx = ck. Ignoring the zero point energy, and taking the universe to be a
periodic box of size L, the energy density is

i dils h
(‘:(T):L Banhqu:/WnkhWkwgw%N
k

LT
(kT (136)
()
where wp = ET'/h. This is just the Stefan-Boltzmann law. The energy density is also related to the mean
square field fluctuations by the stress-energy tensor: € ~ ¢?/c? ~ w?¢? /%, so equating these two expressions
for € gives the root mean square field fluctuation at temperature 7"

a2 R KT
(@)1 ~\wa = (137)

This says that the typical field value for a field in thermal equilibrium is proportional to the temperature
(in natural units the root mean squared value of the field — which has dimensions of energy — is just equal
to kT'). If we use this to compute the potential energy density e, due to the interaction term we find

A
gint 2+ h_c<¢2>2 i
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(138)

Thus, provided the dimensionless interaction strength AMic is much less than unity, as we shall assume, for
a thermal state the interaction energy is a small perturbation to the total energy (136).

At high temperatures such that k7 > v/hegg the typical field values are much greater than ¢y and the
hill at the center of the potential is then relatively unimportant for the motion of the field. However, as
the universe expands the temperature and the field amplitude decrease until the thermal field fluctuations
become of order ¢y and below this temperature the field will be trapped in one or other of the local minima.
This phase transition occurs at a critical temperature

TI’LCQ

VA

Now since the field configuration is initially highly spatially incoherent, different regions of space will want to
settle into different minima. What happens is that the field will become locally smooth within domains with
value ¢ = £y, since this minimizes the (V¢$)? contribution to the energy density, with domains separated
by domain walls where there is a strong localized gradient of the field. One can estimate the thickness of
these walls on energetic grounds to be

kT, ~ VEegy ~ (139)

Ag ~ 20 (140)
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Figure 13: The upper panel shows the variation of the field passing through a domain wall of thickness Aw.
We can estimate the width, and surface mass density of a domain wall, as follows. If the wall has width Az
then the typical field gradient within the wall is V¢ ~ ¢o/Az. The energy density is then e ~ (¢o/Az)?+ 1,
so the density per unit area ¥ is given by 2% ~ eAz ~ ¢%/Az + VpAz. If the wall is too thin, the gradient
energy term becomes large while if the wall is too thick the potential term is increased. The total energy is
minimized for Az ~ ¢g/+/Vp. This is the width of a stable domain wall, for which the mass surface density

is 3~ ¢ov/Vo/c*.

(see figure 13 and its accompanying caption), and the mass-energy surface density in a stable wall is

dov'Vo
—.
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¥~ (141)

The single static planar wall is highly idealized. The initial walls configuration will be highly disordered.
Again, energetic considerations tell us that the system will evolve to minimize the total energy in the
walls. A simply connected region bounded by a wall will tend to shrink. In doing so, it will convert the
potential energy into kinetic energy, so we expect walls to be moving at speeds on the order of the speed
of light. Such a region will shrink to zero size on a time scale of order its size divided by c¢. The energy
released will propagate away as waves, but these will damp adiabatically, so between the walls the field will
remain relatively smooth. The expectation then is that any regions smaller than the horizon scale ~ ct
will disappear, but the field at separations bigger than the horizon scale will remain uncorrelated; the field
dynamics will result in domains, at any time, on the order of the horizon size. In fact we expect a scaling
solution where the field looks the same at any time save for scaling of the mean wall separation with the
horizon scale.

This behavior is illustrated, for a field in 2-dimensions in figure 14. The equations for a scalar field in
2-dimensions, with a W-shaped potential and with a weak damping term were evolved numerically using a
simple centered algorithm. The intial field was a Gaussian random field with a flat spectrum, aside from
a smoothing with a small kernel to make the field smooth at the spatial sampling scale. The initial field
amplitude was somewhat higher than ¢g, but the damping term cools the field, which starts to separate into
domains where ¢ ~ w¢y. As the system evolves, enclosed regions can shrink to zero size and then disappear
with a release of energy in a circular out-going wave. The scale of the walls gradually increases with time.

If we say there is on the order of one wall, of area ~ (ct)? per horizon volume (ct)?, the mean mass-energy

density in walls is
¥

Pwalls ™~ g (142)

This is a serious problem, since the density of the matter, or radiation, in the universe is p = 3H?/87G,
which scales as 1/t?. Thus the walls will rapidly come to dominate the universe; and one would have very
large density inhomogeneity on the horizon scale. This is not what is observed.
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Figure 14: A set of snapshots from a computation of the spontaneous symmetry breaking of a field with
potential V = \(¢? — ¢3)? in an expanding universe. The initial field fluctuations were somewhat larger
than ¢ (the vertical axis here being compressed somewhat at early times).
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5.3.2 Cosmic Strings

Now consider a two-component scalar field ¢ for which the potential V' (¢) is the two dimensional analog of
(135) as illustrated in figure 15. This is often called a ‘Mexican-hat’ or ‘sombrero’ potential. The minimum
energy is on the circle || = ¢y and the field will try to relax towards this. There will be oscillations about
the minimum, but the amplitude of these decreases adiabatically and the field will develop regions where the
field lies in the minimum and varies slowly with position. While a completely uniform field is energetically
favored, just as for domain walls, the assumed initial incoherence of the field limits the scale of coherence;
the formation of a single infinitely large domain being frustrated by the formation of a network of cosmic
strings — localized regions of energy density where the field sits at ¢ = 0.

@] =0

3

I(DI =Ny

Figure 15: Left: the potential function for a 2 component scalar field involved in the generation cosmic
strings. Right: result of numerical simulations (by Paul Shellard’s group) of the evolving network of strings
that develops from initially spatially incoherent field a la Kibble.

To get an idea of the topology of the initial string network, picture the initial field as filtered white noise
with some coherence length set by the filter, and model the initial field evolution as simply rolling ‘downhill’
to the nearest minimum. In most places the field will vary quite smoothly with position, with V¢ ~ ¢g/A,
where A is the coherence length for the initial field. However, at positions where both components of the field
¢1 and @2 were initially very small there will be very large gradients — and therefore very high energy density
— localized near the regions where ¢ = 0 initially. Now in 3-dimensional space the field ¢; will generally
vanish on a surface, and similarly for ¢, so the regions where both components vanish are the intersection of
these surfaces; i.e. on lines, or ‘strings’. There is another way of looking at this; if we traverse an arbitrary
loop in the real three dimensional space, the field moves along a closed trajectory in 2-dimensional field
space. If the field is trapped in the circular trough then it is possible that the field trajectory will pass once
around the brim of the sombrero; we would say that this loop has a winding number of one (or minus one,
depending on the sense of rotation of the field). Now this winding number is a topological invariant; we
can make a continuous deformation of the loop and the winding number cannot change, provided the field
is everywhere confined to the minimum energy circle.

Now the energy for this toy model is in fact divergent. What is energetically more favorable is for the field
to sit at ¢ = 0 along the string axis, with the field falling to the potential minimum within some distance —
the string thickness Az. We can estimate what this is as follows. Consider a perfectly axi-symmetric field
with unit winding number, and let’s assume to start with that the field everywhere (except perhaps exactly
on the axis) lies in the minimum. We can choose the spatial coordinate axes such that the field is

$o | x .
[ ﬁl } Ty (143)
The field gradient term in the energy density is
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If we integrate this from 7min to rmax we find a contribution to the line density

Tmin

2
o = gbg / % = 27r¢>3 [log ()] me= (145)

so the line density diverges logarithmically if we let 7 — 0. Now consider a crude model in which the
field lies in the zero potential for 2 Az but has ¢ ~ 0 for r < Az with some smooth transition between
these. The gradient contribution to the line density will then contain a component o ~ @2 log(rmay/Az)/c?
and there will be a contribution from the potential o ~ VOAxQ/cQ, so the total line density will be

1
o = — (a0} 10g(rmax/AT) + SVoAz?) (146)
C

where a, f are dimensionless coefficients of order unity. Setting the derivative of this with respect to Az to
zero gives the string width for minimum line density (i..e. energy)

Az ~ f—‘o/_o (147)

just as above for domain walls. The linear mass-density is

Voluw? .. %
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(148)
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The generation of this network of strings during a phase-transition involving a two-component field is known
as the Kibble mechanism.

Just as for walls, the initial string network will be quite contorted. Calculating the stress-energy tensor
(or more simply applying energetics arguments) again tells us that the string network will not be static but
will develop transverse velocities ~ ¢. The character of the evolution of the string network is qualitatively
different, however. Strings can reconnect when they intersect and so loops can be chopped off the network.
Such a loop may further intersect itself, but there are stable loop configurations which sit there and oscillate.
Such loops have large quadrupole moments and are moving relativistically, so they are quite efficient at
radiating gravitational radiation. One can show that such loops will decay after ~ ¢?/Go oscillations.

It is reasonable to expect that such a network will evolve towards a scaling solution with roughly one
long string per horizon volume (that being the distance a string section will typically move). If we estimate

the mean density in such strings we find
o

Pstring ™~ W (149)

This is quite different from the case of walls where the density falls as 1/¢; here the string density evolves
in the same manner as the mean density of matter or radiation, whichever happens to dominate. Thus we
expect to have a constant fraction of the total energy density in string at any time. That the system should
tend towards the scaling solution seems very reasonable — if there were too much string in some region then
the interconnection would be more vigorous than on average and vice-versa — and early simulations of the
evolution of the string network were performed and seemed to confirm this. This led to a simple picture
of a continuously evolving network of long strings with a debris of oscillating loops lying around (whose
mass spectrum could be crudely estimated from the dynamics of loop production) and it was supposed that
the loops would act as point-like ‘seeds’ for structure formation. In this picture the density fluctuations
would be highly non-Gaussian, in contrast to the fluctuations arising from inflation for instance. However,
subsequent higher resolution simulations showed that this picture was somewhat flawed. The simple intuitive
expectation (and low resolution simulations) did not incorporate an important feature; each time strings
chop, discontinuities form and propagate along the string as traveling waves. As time proceeds the network
develops more and more fine scale structure. It is still suspected that a scaling solution will result, but
performing the needed simulations is quite a challenge. Analysis of the higher resolution simulations suggest
that the simple one loop-one object picture for structure formation was overly simplified and that the myriad
of rapidly moving loops produces something more akin to Gaussian fluctuations.

Perhaps the nicest feature of the string model is that the model has only one free parameter — the
line-density of the strings o. This sets the amplitude of density fluctuations at horizon crossing. We can
estimate this as follows: The total density is pyot ~ H?/G, so the ratio of string to total density is

Pstring oG Go G@ G (kT)?* _ (kTC>2
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(150)
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where we have used o ~ ¢2/c?, Ep ~ \/he? /G and KT, ~ vV hego. Now the energy density fluctuations in
the strings are of order unity at the horizon scale — there being on the order of one string per horizon —
and therefore the total density perturbation at horizon crossing is

5_/) ik Pstring X (@)2 (151)
p Prot En

The gravity associated with the string network drives motions of the rest of the matter and thus ex-
cites growing density perturbations which could plausibly account for the structure we see. This is very
encouraging. First, the theory naturally generates perturbations with scale invariant amplitude at hori-
zon crossing; the Harrison-Zel’dovich spectrum. Second, for strings formed at around the GUT scale of
kT, ~ 10%GeV ~ 10’3Ep1, this predicts § ~ 1079, which is not far from that observed. Unfortunately,
while the formation of strings at the GUT time is not mandatory, the formation of monopoles is, and these
monopoles are a disaster. They can be gotten rid of by inflation — and one major motivation for inflation
was the monopole problem — but then one would inflate away the strings as well.

An interesting feature of the negative tension is that the stress-energy tensor for an infinite static string
is trace-free and consequently the string produces no tidal field. Outside of such a string spacetime is flat,
but it is topologically different from ordinary Minkowski space in that there is a small deficit in azimuthal
angle 0 = 47Ga/c?. A particularly distinctive features of the cosmic string model arises via gravitational
lensing; lensing by long strings can produce a unique signature both in images of distant galaxies and in
the microwave background. Observations of the latter, however, have ruled out cosmic strings as being the
source of structure in our Universe. It may be that strings are present, but they cannot be the sole source
of structure, so interest in these objects has diminished.

There are other defects which can form. We have already discussed formation of walls from 1-dimensional
fields, and monopoles from three dimensional fields, both of which are pathological. A four-component field
is more benign and gives rise to texture. A texture is not a topologically stable defect. Textures are most
easily pictured in 1-D — where they result from having a 2-component field — and such a texture can shrink
until (V¢)? ~ V(0) at which point it will unwind.

A Useful formulae from matrix algebra

A.1 Derivative of the metric determinant

For a N x N square matrix A with components M;;, the inverse can be computed as

Al LT (152)
EY
where |A| denotes the determinant and where CT is the transpose of the cofactor matrix C whose components
are (—1)"7 times those of the minor M defined such that M;; is the determinant of the (N — 1) x (N — 1)
matrix formed by deleting the i*" row and the j*" column of A.
Multiplying by A and taking the trace gives an expression for the determinant

A= N~'Tr (ACT) (153)

though of course you would never use this as it all the diagonal elements of ACT are the same and any one
of them is equal to |A|.
Applying this to the metric, g — g,,,, whose inverse has components we denote by g, gives

gl = ; Tr(gC") (154)

which is come complicated function of the components of the metric g. But the matrix representing gCT
is diagonal, and a particular component of g, say g,g, will appear once in each diagonal component, where
it will appear multiplied by C#®. But, by virtue of its definition, the cofactor matrix C# is independent of
the particular component g,. So, in the derivative of g with respect to 27, which, on applying the chain
rule, is |g| y = (0|8]/09a8)9as, the factor 0|g|/0gas = CB. Thus we have

gl = C%gap = 1219 gap - (155)
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or
gl/18l = 9% gas (156)

so the inverse of g (matrix-)multiplied by the derivative of g — which sounds like a logarithmic derivative of
g — is just that: it is the logarithmic derivative of the determinant 9, log(|g|)-

What appears with great frequency is not the determinant |g| — which is generally negative as space-
time is locally Minkowskian (three of the eigenvalues of the metric being positive and one negative) — but

V9 = +/—|gl, whose (logarithmic) derivative is

V.,/V9= %gaﬂgaﬁﬁ (157)

A.2 Derivative of the inverse metric

To obtain the derivatives of the components of the inverse of the metric we can simply use

9" guo = 04 L58)
whose space-time derivative vanishes, so
Gvag” 4 = —9" Guoy (159)
from which
i g PO (160)

which was invoked, along with (157) to demonstrate the equivalence of the two different forms of the
d’Alembertian in §3.2.3. This can also be written as

g*f = ~2¢°°\/3 ./ /3. (161)

B Interacting fields

Another situation where an explicit Z-dependence of the Lagrangian density arises is with interacting fields.
Imagine we have two scalar fields ¢ and 1 that are interacting through some extra term in the interaction
to the total Lagrangian density is

E(Qb,a: o, w,aa ¢) == Ld)(ﬁb,aa QS) + ﬁw(ib,a, Q/J) + Eint((/’a 1/)) (162)

where L4(,, @) is the free-field Lagrangian density for the ¢-field and similarly for L£y(¢ q,1) and where,
for the sake of concreteness, we’ll assume the interaction is an addition to the potential energy density:

Lint (¢, ) = —A¢*)? (163)

where \ is a coupling constant. This type of interaction could easily be ‘cooked up’ in the scalar elasticity
model by having two lattices with some kind of extra springs coupling them. The interaction could, of
course, depend on the derivatives of the fields also.

It is straightforward to obtain the Euler-Lagrange equations; there being two, one for ¢ and another for
1. In the equation for ¢, the generalised force is L/0¢ = — ¢ — 2 )% ¢, and similarly for the equation for
.

The total Lagrangian density above has no explicit dependence on &, so it follows, from considering the
derivative of L(Z) = L(¢,o(Z), p(Z),1.o(Z),(Z)) that there is a stress-energy tensor

0 oL
(/)—ﬁ — =+ L (164)
e

T, = ¢,
Y P U
which we see, from the definition £, has three components:
TH, = ];’jy + T{;U + 68 Ling (165)

where 1)), = —¢,(0Ls/0¢ ) — 6y Ly and similarly for T

LA and which satisfies

Ty, =0 (166)
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and that there are four quantities Q, = [ d3xT°, that are globally conserved since

dQy _d [ 3 o _ 1 (5 o 1[5 4 _
g —dt/meU—c/dzTV’o— i d’xT",; = 0. (167)

But if we think of the 1-field as a given ‘external’ influence on the ¢-field the effective Lagrangian density
for the the ¢-field is

Ls($,a,6,T) = Lo(b,0,8) + Line(d, () (168)
and has a 7-dependence. The stress-energy tensor obtained from this
- oL . N
Ty = ~bug=® + 8Ly = Tf, + 8 L (169)
7/l
obeys the continuity equation
= ~ 8£in
<;5V,IJ« o ["” - a,lptwv” (170)

which is generally non-vanishing. This is very reasonable, the v = 0 component of this equation has, on the
right hand side, the generalised force on the ¢-field times its velocity — i.e. the rate at which work is being
done on the i-field — whereas on the left we have the rate of change with time of Tgo, which is (for a weak
interaction) minus the energy density of the ¢-field, along the 3-divergence of the energy flux density. So
this would be the equivalent of Poynting’s theorem.

Note that it is not the case that the sum of the stress-energy tensors for the two fields as defined here
is conserved — that’s because, in general, there is energy and momentum in the interaction term. But if it
is weak — but acts for a long time, so as to have a significant effect in transferring energy and momentum
between the two components — the sum lej ot iRy , will be approximately conserved. The space parts of
this would express Newton’s third law; that any momentum gained by one sub-system is equal to that lost
by the other.

Alternatively, we could write the total Lagrangian density as the sum of two terms with one being, say,
the free-field Lagrangian density for the v field; thus arbitrarily assigning the interaction energies to the
¢-field. This is what happens if, for instance, one has a complex classical scalar field — for which the free-field
Lagrangian is —30,¢*0"¢ — £1/2¢¢* to which we add the free-field EM field — F#*F),, /4110 and then couple
these by replacing 9, = D, = 0, +iqA,. In that case all of the interaction energies are in the modified
scalar field term.

C The stress-energy tensor for EM plus charges

We will now apply the concepts developed above to the electromagnetic field. This may seem somewhat
redundant as we have already developed the stress-energy tensor for EM in chapter 77. The exercise is an
interesting one nonetheless, since the 177" that one obtains a la Noether from the symmetry of the system
with respect to space-time translations is actually different to that we found before in that it is actually
asymmetric.

C.1 The Lagrangian density for EM plus charges

The Lagrangian (??) is that of a free particle L = —m/~ plus an interaction term Li, = qi*A,. Gen-
eralising to a collection of particles, or a continuous distribution of charge, we have Li,, = > qi'A, =
[dB2A,q [ Epf(x,p)it = [dPzA, " So Ling = [ d3xLin with interaction Hamiltonian density

Ling = jluAu' (171)

To this we need to add the free-field Lagrangian density for radiation which, it turns out, is

£Aas) =~ g

PR E,,. (172)

which, as indicated, only depends on derivatives of the potential and not on the potential itself, and which,
in terms of the EM fields is
L(Aa,p) = 3(colEI* — 115 '[BI?) (173)
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The Lagrangian density for the electromagnetic field in the presence of a current j*(Z)
L(Ac; Ao p,2") = ~g = FH Fu + * Ay (174)

with the dependence on z7 because we are considering this to be the Lagrangian density for the EM field
in the presence of some given current density j(&).

To justify (174) we may note that from this and the definition #},, = A,,, — A4, ,, we find 0L/0A, 5 = F5*
while 9L/0A, = 7% so the Euler-Lagrange equations

o ( oc or
GO 175
BP (aAa,g> 54, (175)

become simply Fﬁ“hg = 1pJ%, which are the inhomogeneous Maxwell’s equations.

C.2 The canonical stress-energy tensor for the radiation

To obtain a continuity equation for energy and momentum of the radiation & la Noether we take the partial
derivative of L£(z7) = L(A%(x), A® 5(z7),27) with respect to #”. Using the chain rule gives

8L(z)  ocr oc oc
bor ~ 9Ag o T ga, At o

(176)

where, just to be clear, the last term represents the derivative of £L(Aq, Ay g, 27) with respect to its final
argument keeping A, and A, g fixed, and is equal to j* ,A, since the only ezplicit functional dependence

—
U ).

of L on 7 is through the current j(&)

Eliminating 0L/0A, from this using (175), and using A, = 9, A4, the first two terms on the right
combine, as usual, to become the derivative of a single product, so

3 ) oL oL 1 _ _

L) = 0 (Aaw = ) + g = 100 (Ao 4 1 A (77)

Finally, nsing 0,08 = 0[/0,L(Z) = ~5ﬁ8u(zl%aFaﬁFa5 — j*A,), we obtain the continuity equation

e

C v

ey (178)

)

where the canonical stress tensor for radiation is

TF, = ug H(F™* Aq,y — 164 FPFy) (179)

cCv

C.3 The symmetric stress-energy tensor

The stress-energy tensor (179) is, like the canonical stress-energy tensor for particles, gauge-dependent.
This might not seem surprising since we have obtained this from a Lagrangian density (174) containing a
gauge-dependent interaction term. But even if we remove the interaction term, and start with the gauge
invariant free-field electromagnetic Lagrangian density £ = ~ﬁFw,F“” alone, we still end up with the
gauge dependent stress-energy tensor (179). Another unsatisfactory feature of (179) is that the source-term
for its divergence in (178) is also gauge-dependent. It is in fact, however, minus the source term for the
canonical stress tensor for the particles, so the sum of the canonical stress-energy tensors for the radiation
and particles has a vanishing divergence; i.e. the total canonical 4-momentum is conserved. Also, it does
not, at first sight, seem to agree with what one might expect from Poynting’s theorem, but again that is
perhaps not surprising as what appears in that theorem is j - E which is the rate at which the mechanical,
rather than the canonical, energy of the particles is changing.

These unsatisfactory features are readily avoidable. This is because the continuity equation (178), while
valid, does not uniquely specify the stress-energy tensor. It is possible to modify the radiation stress-energy
tensor without affecting the continuity equation, and, in the process get rid of these problems.

Imagine we were to add to T¢', an additional term of the form 9,(C*®,). Then, when we take the
divergence, we get an extra term 0,0,(C**,). If C**, is anti-symmetric under o <+ p then, since 0u0, is
symimetric, the extra divergence will vanish. Looking at the (gauge-dependent) first term in (179) suggests
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that we might want to try something like C**, = tF“O‘AU. This is indeed anti-symmetric under o <> p
and would add to T, a divergence-free contribution

0aCH®) = (o (FFO Ay + FP o Ay) = (o FP Ay — 1A, - (180)
where we have used the inhomogeneous Maxwell’s equations: F* , = pugj#. The first term here is
#LOF”O‘AV,Q = ~#1—0F"‘“A,,)a which, when combined with ﬂLOFO‘“Aa,,, in (179), gives the gauge invariant

product L Forp, .
o
Adding 9,CH*, + jHA, = ElaF“aAl,ya to (179) gives the symmetric stress-tensor

T, = LFUeF,  — 0 F oy (181)

while changing its divergence, on the right hand side of (178), from —j#A,, , to —j* A, ,+0,(j"Ay) = —j* Flu
(invoking charge conservation it = 0) so, on raising the index v,

TPV = —jPE7 (182)

So T#" is a symmetric, gauge-invariant tensor that depends only on the radiation fields in F),,, and has
a 4-divergence (182) with a source term which is gauge invariant also. Moreover, this source term is just
the opposite to that which sources the divergence of the mechanical stress (77), so

e s =0 (183)

so whatever energy and momentum is given up by the radiation appears in the stress tensor for the matter
and vice versa, the combination T¢" + Th” being conserved. The time component of the above equation
expresses conservation of total (field plus mechanical) energy — in fact it is just Poynting’s theorem — and
the spatial components are the expression of Newton’s law of action being equal and opposite to reaction.

If we compute the components of 7T¢" in terms of E and B (see appendix ?7), we find that they are
identical to what we found before (?7) from Poynting’s theorem and its analogue for momentum.

We arrived at (181) and (182) from Noether’s theorem; i.e. by taking the derivative of the Lagrangian
density with respect to the space-time coordinates. This actually led us to the canonical stress tensor, which
we then had to massage to obtain the symmetric, gauge-invariant version. A much simpler alternative would
have been to postulate (181) based on Poynting’s theorem. Directly taking its derivative gives T{', , =
%(F“D‘MF,,CY e L e — %F‘lﬁFaﬂ,u). The first term on the right is, from Maxwell’s equations, equal to
—j%F,,, so the other terms must vanish. To show this we replace the dummy index p by « in the second
term, so the last two terms become _2,L1L0 FO‘B[QFW,B + F,p,/] and invoking the definition of Iup = Ay g
this is —ﬁF“ﬁ[QA,Wg — (Aaup + Apua)] where by inspection [.. .| is symmetric under a <+ 3 so this, when

contracted with the anti-symmetric F*# vanishes and we obtain (182).

D Additional material

D.1 Classical wave electrodynamics

As will be discussed in the following chapter, cosmologists are very keen on relativistic scalar fields. For the
most part, they use real scalar fields, with Lagrangian densities like £ = —%8,@8”(1) - %‘/LQQSQ where is /1 is
a constant with units of spatial frequency.

Electric charge can be introduced by having a 2-component field, which can be represented as a complex
field, with £ = —%(8#})(8“95)* - %/ﬂ(/)(/)*. As it stands, that is rather sterile as the two field components
are decoupled. But this field can, if we like, be coupled to Maxwell’s electromagnetic field by replacing the
ordinary derivatives 0, by their gauge covariant counterparts D,. The field ¢ then has the same equation
of motion as above, usually called the Klein-Gordon equation, with p in place of me/h. And there is a
charge and current density 4-vector which which looks superficially like the probability density and current
for a QM wave function (but with D in place of V). But it must be kept in mind that the interpretation is
very different; the field ¢ not a QM wave function. A full description of such fields does involve quantum
mechanics, of course. There is a wave function, but it is not the field ¢, rather it is a function — or rather
functional — of ¢. What the classical equations describe is the evolution of the expectation value of the field.
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