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1 Linear perturbation theory

1.1 Perturbation growth in the matter dominated era

1.1.1 The spherical ‘top-hat’ (or ‘Swiss-cheese’) model

This is the simplest model for a density perturbation in a pressure free universe.

• In this model, we take a dust-filled (i.e. zero pressure) FLRW model and excise a sphere and replace
it by a slightly smaller expanding sphere with the same gravitational mass

– so the exterior is unperturbed

– in the Newtonian limit (small binding energies) this means simply concentrating the same proper
mass into a smaller volume

– in the relativistic version, there is an excess of proper mass as the gravitational mass per unit
proper mass is reduced by the gravitational potential

• here we will explore how the density fluctuation evolves with time - first in the Newtonian case

• there are, in general, two ways to set up such a perturbation (as illustrated in figure 1)

– one is to keep the energy of the sphere fixed but to delay the ‘bang-time’

∗ this generates a ‘decaying mode’ and is not very interesting

– the other is to vary the energy, keeping the bang-time tixed

∗ this generates the ‘growing mode’ – which is what we’ll consider here

Figure 1: The ‘Swiss-cheese’ model for a density perturbation.

• the density perturbation is δρ/ρ = 3δR/R

– so to calculate δρ/ρ = δρ(t) we need to calculate δR(t)

• the perturbation to v2 at constant R is independent of time
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• it follows that

– vδv = constant so δv = δṘ ∝ 1/v ∝
√
R/GM ∝ t1/3

∗ we’ll assume here an Einstein-de Sitter universe for simplicity

– so the velocity perturbation is growing with time δṘ ∝ t1/3

– these ‘peculiar’ motions are observable on large-scales using measurements of galaxy distances
and redshifts (as in the ‘Rubin-Ford effect’).

• and integrating that gives δR =
∫
dtδṘ ∝ t4/3 and hence, for δρ/ρ ∼ δR/R,

– δρ/ρ ∝ t2/3

• this is often called ‘gravitational instability’ but that is a misnomer

– the interior evolves conserving its total energy

– the perturbations evolve preserving whatever binding energy they had originally

– the perturbation to the gravitational potential is

– δφ ∼ −δ(GM/R) = GM/R2δR = (GM/R)(δR/R) = (1/3)(GM/R)(δρ/ρ)

– but with δρ/ρ ∝ t2/3 ∝ R this is independent of time

– and with M ∼ ρR3 and Gρ ∼ H2 we have

– δφ/c2 ∼ (HR/c)2δρ/ρ

• This model can be made fully relativistic à la Oppenheimer and Snyder

– the interior is taken to be part of a closed FLRW model

– while the exterior may be a flat or open FLRW model

– and space-time in the gap is Schwarzschild

– one new feature that emerges from the relativistic analysis is that the amount of proper mass in
the interior region is larger than that in the region that has been excised from the exterior (they
have the same active gravitational mass – the Schwarzschild mass parameter – but that required
more proper mass in the interior as the matter their has a greater (negative) binding energy)

– at early times, the perturbation is “outside the horizon”

∗ the rate of change of its radius Ṙ = HR is larger than the speed of light c

– but its expansion velocity decreases with time and it ”enters the horizon” with HR ∼ c
∗ at which time is has δρ/ρ ∼ δφ/c2

The key feature of the spherical top-hat model are:

1. there are two modes: growing δ ∝ t2/3 and decaying δ ∝ t−1

2. the growing mode has

• an associated binding energy perturbation δφ ∼ that is constant in time

• peculiar velocities that obey δv2 = vδv ∼ φ (or δv ∼ δφ/v) which also grow with time (as
δv ∝ 1/v ∝ R1/2 ∝ t1/3)

1.1.2 General (i.e. non-spherical) perturbations

• Consider the region of the universe around us within some modest redshift; maybe z < 0.1 for con-
creteness

– which means we can treat it’s dynamics using Newtonian gravity

and let the density be ρ(r, t) and the velocity be vphys(r, t) where r is the physical position.
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1.1.2.1 The background model

• The ‘background solution’ is spatially constant density ρ(r, t) = ρ(t) and pure Hubble flow vphys =
H(t)r, which satisfy the Friedmann equation H2 = (8/3)πGρ+ constant and the continuity equation
dρ/dt = −3Hρ

1.1.2.2 Comoving coordinates, density perturbation and peculiar velocity

• Define comoving spatial coordinates

– x = r/a(t)

– where the scale factor is such that H = (da/dt)/a

∗ so a could be the distance between and arbitrarily chosen pair of (fictitious) fundamental
observers who are moving like the matter in the background

– it satisfies da/a = Hdt so log a =
∫
dtH or a ∝ e

∫
dtH

• and define the density perturbation

– δ(x, t) = δρ(x, t)/ρ(t) = (ρ(ar, t)− ρ(t))/ρ(t)

• and the peculiar velocity

– v(x, t) = vphys(ax, t)−Hr

– so v is the difference between the actual velocity in a lumpy universe as compared to what the
Hubble velocity would be at that location in the absence of perturbations

1.1.2.3 Scalar and vector perturbation modes

• The results for the spherical perturbation suggest that we can decompose these into a growing and
decaying mode with amplitudes (a function of x at some initial time)

– δ(x, t) = δ+(x, ti)(t/ti)
2/3 + δ−(x, ti)(t/ti)

−1

• in detail, it is a little more complicated than that:

– if one decomposes the density as a sum of comoving Fourier modes

– δ(x, t) =
∑

k δk(t)eik·x

– and similarly for the velocity

– v(x, t) =
∑

k vk(t)eik·x

– then for each k-mode there are four degrees of freedom, not two, as there are 3 components for
the velocity vk

– this gives extra modes that are not present in the spherical perturbation

∗ for which, if we make this decomposition, the velocity for each mode is aligned with the
wave-vector v̂k = k̂

∗ which is like the velocity field in a sound wave – what is called a longitudinal mode

– the extra modes have non-zero transverse velocity v⊥k = vk − |vk|k̂
∗ these are called vector perturbations

∗ while the kind of modes present in the spherical model are called scalar perturbations

– but the vector perturbations decay with time, so we usually ignore them and use the decompo-
sition above

• the longitudinal velocity field determines the rate at which the density perturbation is changing (via
the continuity equation)

• thus, given some initial density and (longitudinal) velocity perturbation we can solve for the amplitudes
of the growing and decaying modes δ±(x, ti)
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• the growing mode will come to dominate and so, in linear theory, the density perturbation grows with
time simply as

– δ(x, t) = δ+(x, ti)(t/ti)
2/3

– because all modes grow at the same rate, regardless of the wave-number

these have associated potential perturbations δφ(x, t) that are independent of time and peculiar ve-
locities proportional to −∇δφ growing like t1/3.

1.1.2.4 Newtonian pressure-free perturbation theory

We will now formalise this a little – this will provide a useful basis on which we will build the description of
more general perturbations.

A particle with peculiar velocity v will, in the absence of any peculiar gravitational acceleration or
pressure gradient, suffer a cosmic drag :

dv/dt = −Hv. (1)

This looks like a friction, but it comes about simply because the particle is passing fundamental observers
who are receding from one another1.

Just as they see photons to have decreasing energy (or momentum) the momentum of a massive particle
– as measured by fundamental observers it it passing – decreases as mv ∝ 1/a.2

Now this is the convective derivative dv/dt = v̇+(v ·∇)v. But the velocity is of 1st order in the density
perturbation. So in linear theory v̇ and dv/dt are the same.

Adding the effect of the density perturbations δρ = ρδ, which ‘source’ the peculiar gravity δϕ satisfying

∇2
rδϕ = 4πGρδ (2)

(where the subscript on the Laplacian shows it is Laplacian with respect to physical coordinates and δ ≡
δρ/ρ) the equation of motion above becomes

v̇ = −Hv −∇rδϕ. (3)

It is convenient to define u = v/a which measures the rate of change of comoving coordinate, which has
time derivative u̇ = v̇/a − vȧ/a2 = v̇/a − Hu, and which, again in the absence of gravity and pressure,
satisfies

u̇ = −2Hu− 1

a2
∇xδϕ (4)

where we have switched the spatial partial derivative to ∇x = a∇r. This is the Dmitriev-Zel’dovich equation
used in N-body calculations. But in that context it is the Euler equation and u̇ is the total time derivative
of particle velocities.

Next we use the equation of continuity. The convective version of this is dρ/dt = −ρ∇r · vphys or

dρ/dt = −ρ∇r · (Hr + v) = −3Hρ− ρ∇r · v (5)

Replacing ρ⇒ ρ(1+δ), using the background continuity equation dρ/dt = −3Hρ and ∇r·v = a−1∇x·(au) =
∇x · u gives

dδ/dt = −(1 + δ)∇x · u. (6)

1One way to see this is to look at the motion of the particle from the perspective of a reference fundamental observer
that it happens to be passing at time t0. There is, by assumption, no peculiar gravity, so that observer is in free fall; it’s an
inertial observer. So, from its perspective the particle – also inertial – has a velocity that is constant (plus a tidally induced
velocity change that – the tidal acceleration being proportional to the distance – is second order in t − t0). After an interval
dt, the particle has moved a physical distance dr = vdt and is now passing another observer who is receding from the reference
observer with a Hubble velocity dvh = Hdr = Hvdt. So the velocity of the particle is seen by these observers to be changing
as dv/dt = −dvh/dt = −Hv.

2This means that from the perspective of fundamental observers the de Broglie wavelength of the particle is increasing in
proportion to the scale factor. One might feel tempted to say that the expansion of the universe is stretching the wavelength
of the particle’s wave-function, or even that this is happening because of the coupling of the wave-function to the gravitational
field of the expanding universe. But that is silly; what one has here is, in locally inertial coordinates, a wave with constant
k = p/~ being viewed by a sequence of observers who look at if from boosted frames that change continually with the time of
the observation.
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And linearising, we can replace dδ/dt⇒ δ̇ and drop the term involving both δ and u, to give

δ̇ = −∇x · u. (7)

Taking the divergence of (4) and using the above to eliminate u, and Poisson’s equation a−2∇2
xδϕ =

∇2
rδϕ = 4πGρδ, gives a single second order equation for the density perturbation δ(t):

δ̈ + 2Hδ̇ − 4πGρδ = 0 (8)

As a sanity check, if we assume an Einstein-de Sitter model, so 4πGρ = H2/2 and a ∝ t2/3 so H = 2/3t,
and, as an ansätz, δk ∝ tα, this becomes the algebraic equation

3α2 + α− 2 = 0 (9)

which, as expected, has solutions α = 2/3 and α = −1.
Things were relatively straightforward since the evolution of the perturbations is independent of their

size. When we include the effects of pressure, we will find that the growth rate is wavelength dependent.
To deal with that, we need to write the density, potential and velocity perturbations as Fourier syntheses:
δ(x, t) =

∑
k δk(t)eik·x, where reality of δ(x, t) imposes the symmetry δ−k(t) = δ?k(t), and similarly δϕ(x, t) =∑

k ϕk(t)eik·x. The longitudinal nature of the velocity field is imposed by writing u(x, t) =
∑

k uk(t)k̂eik·x.
Equations (4), (7) and (2) are all linear and so become equations for the Fourier mode amplitudes, and

the spatial derivatives in these become algebraic: ∇xe
ik·x = ikeik·x. The equation of motion (4) is

u̇k = −2Huk − ikϕk/a
2 (10)

Poisson’s equation (2) is
|k|2ϕk = −4πGρa2δk. (11)

and the continuity equation (7) is
δ̇k = −i|k|uk. (12)

Using the time derivative of the last and (11) in (10) gives equation for the mode amplitude δk(t):

δ̈k + 2Hδ̇k − 4πGρδk = 0 (13)

where the subscript k is rather redundant as nothing here depends on k.
The above results are valid in the matter dominated era and also in the presence of a cosmological

constant or dark energy (provided it is sufficiently ‘stiff’, as would be the case for a scalar field with low
mass). Next we consider the evolution of perturbations prior to recombination when the pressure of the
radiation needs to be taken into account.

1.2 Perturbations with non-vanishing pressure

The foregoing analysis is adequate to describe density perturbations when they are ‘outside the horizon’
when they behave essentially like frozen spatial curvature perturbations – think of the embedding diagram
of an overdensity as a bowl-shaped depression – and for perturbations of comoving wave-number (or spatial
frequency) k sufficiently small that they enter the horizon (at the time when λphys ∼ a(t)/|k| ∼ ct) in the
matter dominated era.

That limits the domain of applicability to super-cluster scales or larger.
Modes with wavelengths corresponding to galaxies and clusters of galaxies enter the horizon before

recombination and behave like sound waves because there is a restoring force from the pressure gradient
associated with the density fluctuation, at least if we assume that the ‘entropy per baryon’ is constant; these
are so called ‘adiabatic’ or ‘isentropic’ perturbations. We will have more to say about this later.

We will start by reviewing the theory of ‘linearised’ sound-waves in a non-expanding framework. This
introduces the sound-speed and relates it to δP/δρ. We then consider waves in the radiation dominated
era, making the simplifying assumption that the the gravity of the perturbations is negligible (a very good
approximation once the waves are a good deal smaller than the horizon size). Then we consider sound
waves in the matter dominated era. Now including the effect of self-gravity; this introduces the concept of
the ‘Jeans length’ which separates large-scale perturbations that grow with time – essentially because their
sound speed has become imaginary – and smaller ones that oscillate (and they do so, as we shall see, with
diminishing amplitude).
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1.2.1 The sound speed in a relativistic plasma

Let’s consider sound waves of small amplitude in a non-expanding plasma modelled as a perfect fluid. We
can think of it as being confined by a box and we will neglect gravity entirely.

1.2.1.1 The continuity equations

We can obtain the equations of motion from the laws of conservation of energy and momentum, as expressed
in Tµν,µ = 0. The stress energy tensor for the fluid is

Tµν = c−2(E + P )UµUν + ηµνP (14)

where Uµ = (γc, γv) is the 4-velocity of (an observer moving along with) the fluid in whose frame the stress
energy tensor has components Tµν = diag(E , P, P, P ), where, as usual, E is the energy density and P is the
pressure (flux density of momentum). We will be interested here in the case where the pressure is that of
the radiation (assumed to be tightly coupled to the plasma).

The general form of the continuity equations are then

0 = (E + P ),µU
µUν + (E + P )(Uµ,µU

ν + UµUν ,µ) + c2P ,ν

= Uν
d(E + P )

dτ
+ (E + P ) (cUν∇ · v + dUν/dτ) + c2P ,ν

(15)

where ∇ · v = Uµ,µ is the volume expansion rate of the fluid as measured in the frame of the fluid3. And
these, for ν = 0 and ν = i respectively, are

dE
dτ

= −(E + P )∇ · v

dv

dτ
= − c2

E + P
∇P

(16)

Q: The appearance of the enthalpy E+P in the energy conservation equation is relatively straightforward;
the energy goes down for two reasons – one is its dilution as the volume increases, the other is that the fluid
does PdV work. But why does enthalpy appear in the second? Forget about expansion for a minute; the
pressure is the flux of momentum, so its divergence ∇P is the rate at which momentum is changing locally.
So this equation says that the rate of change of momentum is ρ + P/c2 times the acceleration a = dv/dτ .
Why not just ρa?

1.2.1.2 The linearised wave equation

These admit ‘zeroth order’ solutions where the energy density E(x, t) = E0 is constant in space and time, as
is the pressure P (x, t) = P0, and where the fluid velocity field vanishes everywhere: v(x, t) = v0 = 0.

Writing E = E0 + E1(x, t) + . . . and similarly for the pressure and velocity, it is clear that the spatial
derivatives on the right hand sides are 1st order quantities, so, working at linear order, we can take the
multiplying factors on the right to be the zeroth order quantities.

On the left we will have convective derivatives with respect to proper time of 1st order quantities
E1 and v1. But then we can take these to be partial derivatives with respect to coordinate time, since
d/dτ = γd/dt = (1 +O(|v1|2/c2))d/dt and d/dt = ∂t + v1 ·∇, so we can take d/dτ = ∂t on the left, so

Ė1 = −(E0 + P0)∇ · v1

v̇1 = − c2

E0 + P0
∇P1.

(17)

which can be combined to
Ë1 = c2∇2P1 (18)

3To obtain this we have used the fact that, with Uµ = dxµ/dτ = cγdxµ/dx0 its 4-divergence is Uµ,µ = c∂µ(γdxµ/dx0) =
cdγ/dx0 + cγ∂µ(1,v). Evaluating this scalar in the instantaneously co-moving rest-frame of the fluid, the first term vanishes
(since dγ = d(1− v · v/c2)−1/2 = v · dv/γ3 and v = 0 in this frame) while the second is c∂iv

i = c∇ · v.
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And if the perturbation to the pressure associated with a perturbation to the energy density δE = c2δρ
is δP , we have a linear, dispersionless wave equation

Ë1 = c2
s∇2E1 (19)

which allows travelling wave solutions moving at the sound speed cs whose square is

c2
s =

δP

δρ
. (20)

1.2.1.3 The comoving sound horizon scale

The pressure, we will assume, comes entirely from the radiation and is P = 1
3ρrc

2. In the limit that the

radiation dominates the density, we have δP/δρ = c2/3 and waves travel at cs = c/
√

3. More generally,
if a volume element undergoes a fractional volume change δV/V the change in the density of baryons
(assumed non-relativistic) is δρb/ρb = −δV/V while that of the radiation – with ‘adiabatic index’ −4/3 –
is δρr/ρr = −(4/3)δV/V and so δρ = δρb + δρr = −(ρb + 4

3ρr)δV/V while δP = 1
3δρrc

2 = −(4/9)ρrδV/V so

c2
s =

c2

3

4ρr

4ρr + 3ρb

. (21)

Just as we defined the comoving (light) horizon scale as λh ≡ c/Ha ∼ ct/a – whose physical implication
is that it is the comoving distance the light can travel in one expansion time texp ≡ 1/H, and which limits
the range over which any causal physical influence can be propagated – one can define the comoving sound
horizon scale to be λs ≡ cs/Ha.

In the radiation dominated era, cs = c/
√

3 and the sound horizon tracks the light horizon. So it is only
just a little after a wavelength enters the horizon that sound waves can propagate across it.

In the matter era, in contrast, cs ' (2/3)
√
ρr/ρb ∝ 1/

√
a while H ∝ √ρ ∝ a−3/2, so cs/Ha ∝ a0.

Thus the comoving sound horizon tracks the light horizon until teq – both growing as a – but thereafter is
constant. This is only valid as long as the photons remain coupled to the baryons; i.e. up until trec when the
hydrogen (re)combines. At that point, the sound speed for the baryons drops precipitously, and pressure
becomes unimportant. While the ‘plateau’ of constant comoving sound horizon only lasts a limited time,
it is important since it introduces quite a strong feature in the spectrum of density fluctuations emerging
after recombination.

1.2.2 Sound waves in the radiation era

A general treatment of perturbations in the radiation era is somewhat complicated. Broadly speaking, while
outside the horizon the pressure gradients are not important and the spatial curvature perturbations are
‘frozen in’ (though the precise definition of this is a little subtle as the spatial curvature depends on the
hypersurfaces on which on measures the curvature). At horizon entry the pressure gradient acceleration is
similar to the gravitational acceleration. But, very soon after, the pressure gradients dominate the evolution,
and what we have, as long as the photons remain tightly coupled, are waves whose frequency is changing –
because of the increase of the wavelengths as they expand – and which evolve adiabatically and, one might
think, would undergo some kind of secular evolution. In fact, the amplitude of the waves does not change,
as we now show.

To understand the damping, is is sufficient to consider a plasma in the Milne model, with waves that
are standing or travelling waves in comoving coordinates. We will assume that ρr � ρb, so P = E/3 and
the continuity equations are

dE
dτ

= −4

3
E∇ · v

dv

dτ
= −c

2

4

∇E
E
.

(22)

where all quantities are as measured by the observer who sees Tµν = E diag(1, 1/3, 1/3, 1/3).
We will take as the zeroth order solution a velocity field which is that of fundamental Milne observers.

These see ∇ · v0 = 3H = 3/τ . And, unsurprisingly, the 1st equation then tells us that dE0/E0 = −4dτ/τ
with solution E0(τ) ∝ τ−4 (i.e. going like a−4 since the scale factor is proportional to τ in the Milne model).
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We now want to introduce perturbations, writing E(x, τ) = E0(τ)+E1(x, τ), and with associated velocity
field with divergence ∇·v = ∇·(v0+v1) = 3/τ+∇·v1. The spatial gradients here are with respect to physical
distance. The waves, however, are postulated to have wavelengths that expand in proportion to τ , thus, for
a wave E1 = 1

2(Ekeik·x + c.c.), so k is a comoving wavenumber, and with λphys = 2πcτ/|k| small compared
to the curvature scale, we have ∇E1 = 1

2(ikEkeik·x + c.c.)/cτ , and similarly ∇ ·v1 = 1
2(ik ·vke

ik·x + c.c.)/cτ
The energy continuity equation is

Ė0 + Ė1 = −4
3(E0 + E1)∇ · (v0 + v1) (23)

whose 1st order components are

Ė1 = −4
3(E1∇ · v0 + E0∇ · v1) = −4E1/τ − 4

3E0∇ · v1. (24)

For a single wave, with a longitudinal velocity field, the energy continuity equation becomes

kvk = −3cτ

4E0
(Ėk + 4Ek/τ) (25)

with time derivative

kv̇k = −15c

4E0
(Ėk + 4Ek/τ)− 3cτ

4E0
(Ëk + 4Ėk/τ − 4Ek/τ2) (26)

while the momentum continuity equation tells us that

kv̇k = − k2Ek
4cτE0

. (27)

Putting these together (and dropping terms like Ek/τ2 as compared to Ėk/τ and k2Ek/τ2) gives

Ëk + 9Ėk/τ − 1
3(k2/τ2)Ek = 0, (28)

which is a damped oscillator equation. Making the usual substitution Ek = χ/τ9/2 eliminates the damping
term. The frequency is ω ∝ 1/τ and adiabaticity says that χ̇2 = ω2χ2 ∝ ω so χ ∝

√
τ and hence Ek ∝ 1/τ4.

But that is the same variation as E0, and hence the amplitude of the wave remains constant.
You might think there would be a (much) easier way to see this, and indeed there is. If we think about

a certain comoving volume, the mass is M = V E/c2 ∝ 1/a, which is oscillating at a frequency ω ∝ 1/a and
has some velocity v. The energy is E ∼ Mv2 and adiabaticity says this should vary in proportion to ω, so
v2 ∝ ω/M ∝ a0 so the amplitude of the velocity is unchanging. That means that the physical displacement
is δr ∼ vT/2π = v/ω ∝ a, but that means the comoving dispacement δr/a ∝ a0 and is also unchanging.

1.2.3 Sound waves in the matter era

We will now consider evolution of sound waves after teq. Of interest are waves that are below the horizon
scale – so we can use the Newtonian approximation developed above (with gravity incorporated) – but may
be above or below the sound horizon scale.

1.2.3.1 The equation of motion and the Jeans length

To include the pressure gradient in the equation of motion for δ we just need to augment the gravitational
acceleration −∇rδϕ by the pressure gradient acceleration −ρ−1∇rP which, for linear perturbations, is
−ρ−1∇rδP or, with δP = c2

sδρ is −c2
s∇rδ. The result is

δ̈k + 2Hδ̇k − (4πGρ− c2
sk

2/a2)δk = 0 (29)

The effect of pressure radically changes the solutions. If k � kj where the comoving Jeans wave-number is

kj ≡
√

4πGρa2/c2
s (30)

we can ignore the effect of pressure, and we have growing perturbations as before.
But if k > kj the sign of the coefficient of δk becomes positive and the result is that we get perturbations

that oscillate with time.
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1.2.3.2 Adiabatic damping of sound waves

They are however damped oscillations. As usual, to understand the adiabatic damping, we make a change
of variables: δk = ∆kt

α. In terms of ∆k the equation of motion becomes

∆̈k + 2
(α
t

+H
)

∆̇k +

(
c2
sk

2

a2
− 3

2
H2 +

2Hα2(α− 1)

t3

)
∆k = 0 (31)

so, if we take α = −2/3 the coefficient of the damping term vanishes and we have

∆̈k +

(
c2
sk

2

a2
−H2

)
∆k = 0 (32)

which is an undamped oscillator equation for the auxiliary variable: ∆̈k = −ω2
k∆k with time varying

frequency.
For wavelengths less than the Jeans length, we can neglect H2 as compared to c2

sk
2/a2 and we have that

the frequency varies as ωk ' csk/a ∝ a−3/2. Adiabaticity tells us that the envelope obeys ω2
k∆2

k ∝ ωk so
∆k ∝ 1/

√
ωk ∝ a3/4. But with α = −2/3, δk = ∆kt

α = ∆k/a ∝ a−1/4.
We therefore infer that the amplitude will decrease with time (but not very rapidly) as

δk ∝ (1 + z)1/4. (33)

As with sounds waves in the radiation era, we could have reached this conclusion more simply by
saying that the matter in some fixed comoving volume has mass M – which is now independent of a –
which is oscillating with velocity v, and with frequency ω ∼ csλphys ∝ a−3/2, so its energy is E ∼ Mv2

and for this to vary in proportion to the frequency we must have v ∝
√
ω. The physical displacement

is δr ∼ v/ω ∝ 1/
√
ω ∝ a3/4 while the physical wavelength is increasing as λphys ∝ a and therefore the

amplitude of the wave – which must be on the order of δr/λphys – varies with the scale factor as a−1/4.

1.2.4 Isentropic vs isocurvature fluctuations

We have assumed above that the ‘entropy per baryon’ is a universal constant. For thermal radiation the
entropy density is just, to order of magnitude kB times the number density of photons. The entropy also has
a contribution from other relativistic species like neutrinos. Such perturbations are often called, for obvious
reasons, isentropic. They are also often called adiabatic fluctuations as they are the kind of perturbation
you generate if you take all the contents of some region of space and compress or rarify it, without and heat
flowing in or out of the volume (so adiabatic in the sense of ‘no heat flow’).

An alternative type of fluctuation, though one that is considered less these days, is the kind that would
be generated if, for example, baryogenesis – i.e. whatever unknown physics is responsible for the fact that
there is an excess of matter over anti-matter at late times but, judging from the fact that there are ∼ 109

photons per baryon, a small difference at early times – acted in a way that was somewhat inhomogeneous.
This, or other entropy generating processes happening in an inhomogeneous way, could generate initial

conditions where the total energy density is initially unperturbed and where any excess of the density
of baryons is compensated for by a deficit of radiation density and vice verse. If so, there would be no
associated curvature fluctuations, leading to the terminology isocurvature perturbations. These possibilities
are illustrated in figure 2.

Such perturbations would, once inside the horizon, oscillate as sound waves, but about an asymmet-
ric offset (in which the temperature would be uniform in space – hence the alternative nomenclature of
‘isothermal’ perturbations.

One recent application of isocurvature perturbations is in relation to the (controversial) ‘dark flows’
claimed from measurements of the kinematic Sunyaev Zel’dovich (KSZ) effect with clusters of galaxies. These
suggest that either there are substantial ‘bulk-flows’ on surprisingly large scales or that the conventional
interpretation of the dipole anisotropy of the CMB as being due to our motion with respect to the frame of
rest of distant matter is incorrect. One way to accomplish the latter would be for there to be an isocurvature
component with a very large wavelength (larger than the present horizon) that generates a dipole. Such
models are sometimes called ‘tilted’ cosmologies. The possibility that the ‘conventional wisdom’ regarding
the CMB dipole is false was first pointed out by Jim Gunn.
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Figure 2: Isentropic and isocurvature perturbations.

2 Scenarios for structure formation

2.1 The adiabatic, baryon dominated universe

• the first scenario to be explored in detail was the baryon dominated model with ‘adiabatic’ – what we
would now call isentropic – initial conditions

• these evolve conserving the curvature perturbation while ‘outside the horizon’, but then oscillate like
sound waves once they ‘enter the horizon’

• this results in what, in the Soviet Union were known as ‘Sakharov oscillations’ in the emergent power
spectrum

– calculating this involves a slight subtlety called the ‘velocity overshoot effect”.

∗ recombination is quite rapid; the width of the last-scattering surface is about 10% of the
horizon size.

∗ if we were to model it as instantaneous, then what we would do is match the density and
velocity of the sound wave, at the instant the pressure ‘switches off’, to a growing and
decaying mode (and then calculate the output spectrum using only the growing mode)

∗ the velocity in the sound wave is v ∼ csδ ∼ (λj/t)δ while that in a growing mode is v+ ∼
Hλδ+ ∼ (λ/t)δ+

∗ so, for λ < λj, the velocity associated with a sound wave of amplitude δ is greater than the
growing mode velocity for the same amplitude

∗ this argument suggests that, for λ � λj, the sound wave is a combination of growing and
decaying modes δ+ and δ− that nearly cancel

∗ and that the final growing mode amplitude is obtained by matching the velocity (and it is
actually waves that are at a temporal node of the density that couple most strongly to the
growing modes at later times; hence the velocity overshoot terminology)

∗ this analytic argument gives a sense of what is involved, but should not be taken too seriously,
as, in reality, there isn’t a great range of wavelengths below the maximum Jeans length for
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which one can model recombination as instantaneous and one must rely on the numerical
calculations (the first ones being done by Peebles and Yu).

• these are the ‘baryonic acoustic oscillations’ discussed earlier and the evolution such sound waves is
illustrated in figure 3

Figure 3: Evolution of perturbations in a baryon dominated universe with adiabatic/isentropic initial con-
ditions.

• The fact that the comoving Jeans length is unevolving during the interval teq < t < trec (the latter also
often called tdec for ‘decoupling’ ) means that there is a ‘step’ in the power spectrum as modes with
k bigger than the maximum Jeans frequency get damped (slowly) while those with slightly smaller k
enjoy continual growth.

• This feature happens at a length scale comparable to that of super-clusters.

• The other feature in the power spectrum is the damping at higher k. This was invoked as a way to
explain the mass of galaxies.

The figures here are schematic only. The details were worked out by Peebles and Yu and by Wilson
and Silk in the 70s. The result is the ‘transfer function’ giving the amplitude for modes emerging after
decoupling relative to the initial value at horizon crossing. The latter was usually assumed to have the
‘Harrison-Zel’dovich’ spectrum P (k) ∝ k, for which the amplitude at horizon crossing – and therefore also
the gravitational potential fluctuations (or the curvature fluctuations) – are scale invariant.

2.2 The ‘hot dark matter’ (HDM) scenario

The evidence for copious amounts of DM (‘missing mass’) in clusters had been around from the 30s with the
work of Zwicky. But the late 70s and early 80s saw a strengthening of the evidence from rotation curves of
galaxies and from relative motions of pairs of galaxies. Big bang nucleosynthesis suggested a small baryon
density, and the idea that the universe may be dominated by ‘non-baryonic’ dark matter – and that this
might resolve the flatness problem – gathered strength.

One possibility for non-baryonic DM is a massive neutrino. The number density of neutrinos is known
from the number of species (3 in the standard model) and from them being in thermal equilibrium in the
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Figure 4: Power spectrum of perturbations in a baryon dominated universe with adiabatic perturbations

early universe (so each species would be roughly as abundant as photons). In order for one of the species
to give closure density requires a mass of about 30eV, and they would become non-relativistic close to
zeq. Interestingly, there was a claimed measurement made in the Soviet Union that gave around this value
(though this has subsequently been debunked) and which spurred much interest in this hypothesis.

Figure 5: Transfer function in the HDM scenario (left). Pioneering numerical simulation by Sergei Shandarin
on right. This figure was dubbed the ‘cosmic chicken’.

The evolution of perturbations in the HDM model (worked out by Dick Bond and George Efstathiou
and others) is very different: perturbations entering the horizon when the neutrinos are still relativistic are
washed out by free-streaming of the perturbations. There would still be some surviving contribution from
the baryonic component on small scales, but these are very weak. The result is sketched in figure 5.

The formation of structure in this scenario is described as ‘top-down’ , with the first structures being
of supercluster scale. As pointed out by Zel’dovich, these would form, at first as large ‘pancakes’. In the
‘Zel’dovich approximation particles are assumed to move essentially ballistically, but with velocities growing
with time as t1/3, and the emergence of structure is analogous to the pattern of caustics that form on the
bottom of a swimming pool on a sunny day). Smaller scale structures, such as galaxies, were then assumed
to have formed by fragmentation of these supercluster-scale pancakes (or blinis).

One very interesting observation was made by Tremaine and Gunn. The phase space density of the
neutrinos is given initially by the Fermi-Dirac distribution and cannot increase (it may decrease in a ‘coarse-
grain average’ sense). They pointed out that the phase space density observed in the cores of clusters is
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uncomfortably high for this model.

2.3 The ‘cold dark matter’ (CDM) scenario

The next scenario to be explored in detail was the cold dark matter (CDM) model. Here the DM is some
particle much heavier than the hypothetical massive neutrino. Common candidates are things like the super-
symmetric (fermionic) partner to the graviton the graviton, the idea being that the lightest such particle
would be stable as there is nothing it can decay to.

In the CDM model it is assumed that any thermal velocities of the particles are negligible; that they are
initially on a 3-dimensional sub-space of the 6-dimensional phase space.

In the radiation dominated era these particles are only a tiny component of the density. As perturbations
– assumed to be isentropic – enter the horizon, the dominant component (the radiation, tightly coupled to
the baryons) starts to oscillate, and the gravitational potential fluctuations – which up to that point had
been constant – rapidly diminishes and growth of the density perturbations of the CMB ‘stagnates’. But
it is not washed out, as in the HDM scenario, rather the amplitude of the perturbations remains, broadly
speaking, equal to its value at horizon crossing. Once the CDM comes to dominate over the radiation
density, growth recommences. The resulting ‘transfer function’ is sketched in figure 6.

Figure 6: Transfer function for density perturbations in a universe dominated by cold dark matter.

With the canonical ‘Harrison-Zel’dovich’ scale invariant n = 1 initial spectrum the output spectrum
is n = 1 for wavelength much larger than the horizon size at zeq but n = −3 on small scales. With the
asymptotic small-scale n = −3 index, the initial linear theory variance is growing logarithmically with
wave-number. That means that the first objects to turn around and collapse and virialise will be small
‘mini-haloes’. But the expectation is for a rapid increase in the mass of collapsed structures until one
reaches scales where n is significantly greater than -3, at which point one expects a ‘hierarchical’ growth of
structure with the small haloes being incorporated into successively larger haloes.

But the transition is rather gradual. As was already appreciated at the time – particularly by Richard
Gott and Martin Rees – the observed clustering of galaxies (on scales of ∼ 1−10 Mpc) was in good agreement
with what would arise from a post-decoupling spectrum with n ' −1. Detailed calculations – again Dick
Bond and George Efstathiou were highly influential – showed that CDM delivers the goods.

An essential difference between the scenarios described above is the difference in the strength of the
fluctuations at large scale required in order to provide formation of galaxies and structure as observed. It is
lowest in the CDM model. This proved to be the undoing of the alternative scenarios. But in the early 80s
this was not yet known.

2.3.1 The baryonic wiggles

The transfer function sketched in figure 6 is what one would get for a universe with only CDM and without
any, or with only a negligible amount of, baryons. But in fact, the baryons are not negligible; they constitute
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about 20% of the mass density. So the emergent spectrum after decoupling will contain, in addition to the
fluctuations in the CDM density that of the baryons which, as we have seen, have Sakharov oscillations4.

The baryon density being sub-dominant, and the sound wave having damped slightly compared to its
horizon crossing value, the baryonic perturbations may give an enhancement or a diminution of the total
δρ = δρc + δρb depending on the temporal phase of the sound wave at decoupling.

The resulting wiggles in the spectrum are weak, but are important as they can be measured in the
spatial distribution of galaxies and they provide a ‘standard ruler’ of known comoving length (essentially
the maximum comoving Jeans length) and can be used to measure Da(z) as we describe later.

3 Non-Linear Cosmological Structure Models

In chapter ?? we explored the evolution of small amplitude perturbations of otherwise homogeneous cosmo-
logical models. This provides an accurate description of the evolution of structure from very early times.
On sufficiently large scales, the structure is still in the linear regime today, but small scale structures have
reached the point where δρ/ρ & 1 and have gone non-linear.

When dealing with the development of non-linear structure we can usually neglect radiation pressure
and assume that the structures are much smaller than the horizon scale, so a Newtonian treatment is valid.
However, the equations of motion are still relatively complicated and it is hard to find exact solutions
except in highly idealized models such as spherical or planar 1-dimensional collapse. One approach to
non-linear structure growth is to attempt to evolve the initial conditions forward from the linear regime
numerically using either N-body simulations, to evolve the collisionless Boltzmann equation, or hydro-
dynamical simulations to evolve the Euler, energy and continuity equations. The former is adequate to
describe the evolution of collisionless dark matter matter, but the latter is required if one also wants to treat
the baryonic matter. Another possibility is to extend perturbation theory beyond linear order. This is an
area where there has been much activity by theorists in recent years. These calculations typically assume a
Gaussian initial density field, and then compute the emergence of non-Gaussianity, e.g. the skewness, or the
kurtosis of the density distribution. Such results are limited to the ‘quasi-linear’ regime; i.e. density contrasts
δ . 1. This is a rather limited range of validity. Also, since most interest is in theories with ‘hierarchical’
initial fluctuation spectra, when one scale is just going non-linear, there are smaller scale structures which
will be highly non-linear. Usually such calculations deal with this by assuming some smoothing of the initial
δ-field, but the validity of this is questionable.

Here I shall describe a number of approximate methods and models that directly address the ‘quite-
strongly non-linear’ regime. These models are typically quite idealized, but they are still useful as they
provide insight into the way structure has evolved, and is evolving today.

3.1 A simple model for the formation of galaxy clusters

• We can estimate what we would expect for the density, and density contrast , of a recently virialised
cluster using the following simple model:

– we assume there is a ‘background’ cosmology which, for simplicity, is Einstein-de Sitter, so r ∝ t2/3

– in that background we carve out a sphere of mass M

∗ which, in the background, would have been marginally bound to itself

– and we replace it by a sphere of the same mass with negative binding energy that will expand to
some maximum radius an then recollapse

• at the time tmax of maximum expansion the kinetic energy K was zero and the potential energy was
U(tmax) ∼ GM/rmax with some coefficient determined by the shape

• the virial theorem tells us that, after it has collapsed and virialised, it will have 2K + U = 0

• with E = K + U = U(tmax), and K = −U/2, this implies that the final binding energy must be

4In the context of the CDM model, there is not expected to be an extended period before decoupling with constant Jeans
length. The baryon density in these models is Ωb ' 0.05 (consistent with BBN results) while the CMB radiation has present
Ωr ' 5 × 10−5. That means that at z = 1000, ρb ' ρr and the sound speed was still cs ' c. This means that the maximum
comoving sound horizon is essentially independent of Ωb ' 0.05.
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Figure 7: A simple model for the formation of a cluster is that it
was initially a uniform density sphere ‘carved out’ of a uniform
density ‘background’ universe but with a lower total energy, so
it was gravitationally bound to itself and therefore doomed to
expand only to some maximum radius and then collapse. The
virial theorem tells us that, in order to generate enough kinetic
energy to satisfy 2K+U = 0, it must collapse by about a factor 2
from its maximum size. This gives the Kepleresque relation be-
tween radius, mass and time of collapse: R = 3

√
GM/4π2 T 2/3.

If the background universe were of marginally bound Einstein-
de Sitter form, it would have re(T ) = 3

√
9GM/2T 2/3. It follows

that the recently virialised object should have a density contrast
ρ/ρ = (re/R)3 = 18π2 ' 200.

– U(tvir) = 2U(tmax)

• so, since U ∝ 1/r, it must have collapsed by a factor 2 in order to generate the kinetic energy required
to stabilise itself against further collapse

• the equations of motion are

–
exterior : v2 = 2GM/r
interior : v2 = 2GM/r − constant

• the solution for the exterior is

– re = αt2/3

– with α a constant, which implies, for the velocity

– v = dr/dt = (2/3)αt−1/3 ⇒ v2 = (4/9)α2t−2/3 = (4/9)α3/r

– and which, with the equation of motion, implies α3 = 9GM/2 and so

– re(t) = 3
√

9GM/2 t2/3

• the solution for the interior is the cycloid

–
r = R(1− cos η)

t = (T/2π)(η − sin η)

– which we can verify by computing v = dr/dt = (dr/dη)/(dt/dη) = (2πR/T ) sin η/(1− cos η)

– which, with a little algebra, implies v2 = (2πR/T )2(2/(1− cos η)− 1), or

– v2 = 8π2R3/T 2r − 4πR2/T 2

– and which, with the equation of motion, implies

– R = 3
√
GM/4π2 T 2/3

• comparing these we can estimate the density of a recently virialised object with respect to that of a
critical density of the same age as

– ρ/ρ = (re(t = T )/R)3 = 18π2 ' 200

• while a crude model – it neglects completely the effect of dark energy, for instance – this is borne out
by numerical simulations

– these show that, if we consider a sphere around a simulated cluster, or ‘halo’, within which the
density contrast is about 200 then this delineates quite well the exterior ‘infall region’ from the
virialised interior where we have multiple streams of matter

• it also turns out, for rich clusters, with velocity dispersions of about 1000km/sec, to be about the same
as the ‘Abell radius’ (1.5Mpc/h) that George Abell arrived at empirically
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Figure 8: Illustration of the kind of divergence free flow pattern induced by a point mass. The peculiar
velocity falls off as δv ∝ 1/R2, with the consequence that the flux of matter through any a shell of radius R
is independent of R. For R > 0 the density remains unperturbed, but there is a net accumulation of mass
at the origin.

3.2 Gunn-Gott Spherical Accretion Model

Another very illuminating model is that of Gunn and Gott (19??) who considered what happens if one
introduces a point-like ‘seed’ of mass M0 into an otherwise uniform Einstein -de Sitter universe.

First consider the linear theory. At large radii, the mass will induce a peculiar acceleration at physical
distance R of

g =
GM0

R2
. (34)

Acting over a Hubble time t ∼ 1/H this will generate a peculiar infall velocity

δv ∼ gt ∼ GM0

HR2
. (35)

This kind of δv ∝ 1/R2 flow (see figure 8) is ‘divergence free’, so there is no change in the density at
large distances (think of two concentric comoving shells; the flux of matter across a surface is the velocity
times the area and is independent of radius, so there is no build up except at the center). The amount of
mass convected across a shell in one Hubble time is δM ∼ ρR2δvt which, with (35) and H2 = 8πGρ/3,
gives δM ∼ M0. Thus the seed induces, after one expansion time, a growing mode density perturbation
(δρ/ρ)i ∼M0/M , and this subsequently grows with time as δρ/ρ = δM(t)/M ∝ a(t). This is assuming, for
simplicity, an Einstein - de Sitter background.

The amount of mass accumulated in the center is therefore

δM(t) ∼M0
a

ai
∝ a(t). (36)

This mass represents a density contrast of order unity at a physical radius R such that δM ∼ ρR3, and
slightly inside will lie the turnaround radius

Rturn ∼ (δM/ρ)1/3 ∝ a4/3. (37)

As time goes on, progressively larger shells will turn around, collapse and virialize in some complicated way
with shell crossing etc. However, we may reasonably expect that the final specific binding energy of a shell
of a certain mass will be equal, modulo some factor of order unity, to its initial specific binding energy δφ.
Now the initial binding energy is a power law in radius:

δφ ∼ GM0/R ∝ 1/R ∝M−1/3, (38)
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whereas the final binding energy as a function of the final radius Rf is

δφ ∼ GM(Rf )/Rf (39)

where M(Rf ) is the mass within radius Rf . Equating these gives the scaling law

M(Rf ) ∝ R3/4
f . (40)

If the mass within radius Rf is a power law in Rf then so also is the density:

ρ(Rf ) ∼M(Rf )/R3
f ∝ R

−9/4
f . (41)

This analysis then tells us that the virialized system should have a power law density profile. What is
interesting about this result is that it is very close to the ρ(R) ∼ R−2 density run for a flat rotation curve
halo, and also similar to the profile of clusters of galaxies, which are also often modeled as ‘isothermal
spheres’.

3.3 The Zel’dovich Approximation

In linear theory, and for growing perturbations in an Einstein - de Sitter model, particles move with peculiar
velocity

v(r, t) = (t/t0)1/3v0(r) (42)

where now r is a comoving spatial coordinate and v0 is the peculiar velocity at some initial time. This says
that the peculiar velocity field just grows with time at the same rate v ∝ t1/3 at all points in space.

The physical displacement of a particle in time dt is dx = vdt, so the comoving displacement is

dr =
dx

a
=

v

a
dt ≡ udt (43)

where the comoving peculiar velocity is u = v/a. The rate of change of comoving position with scale factor
a is then

dr

da
=

v

a

dt

da
, (44)

but with v ∝ t1/3 and a ∝ t2/3, so da/dt ∝ t−1/3, this says that

dr

da
∝ t0. (45)

Therefore, if we define a new ‘time’ τ ∝ a, then the particles move ballistically in comoving coordinate
space: dr/dτ = constant. Zel’dovich’s approximation is to assume that this ballistic motion continues into
the non-linear regime.

The result is a Lagrangian mapping resulting in formation of caustics, or surfaces of infinite density. This
is very analogous to the formation of caustics on the swimming pool floor, which we explored in our study
of geometric optics in chapter ??. There the horizontal deflection of the rays — a 2-dimensional vector
displacement — increases linearly with distance from the surface, and here the 3-dimensional comoving
displacement increases linearly with ‘time’ τ . We can write the actual comoving position or Eulerian
coordinate x as a function of the initial or Lagrangian coordinate r as

x(r) = r + τU(r) (46)

where U is a suitably scaled version of u.
Until caustics form, the density is

ρ ∝
∣∣∣∣∂xi∂rj

∣∣∣∣−1

(47)

where |∂x/∂r| is the Jacobian of the transformation from Lagrangian to Eulerian coordinate. This is just
conservation of mass: dM = ρLd

3r = ρEd
3x, with ρE and ρL the densities in Eulerian and Lagrangian space

respectively. Now from (46), ∂xi/drj = δij + τ∂Ui/∂rj , so we can also write the density as

ρ ∝ 1

(1 + τλ1)(1 + τλ2)(1 + τλ3)
(48)
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where the λi are the eigenvalues of the deformation tensor Φij = ∂Ui/∂rj .
If there is a negative eigenvalue λ1 < λ2, λ3, then the density of a small comoving volume of matter will

become infinite with collapse along the appropriate principle axis when τ = −1/λ1. Pancakes — or perhaps
we should call then blinis — form with a multi-stream region sandwiched between the caustic surfaces.
These pancakes grow rapidly and intersect to form a cellular network of walls or pancakes intersecting in
lines with the matter in these lines draining into the nodes where all three of the eigenvalues of ∂Ui/∂rj go
negative.

The Zel’dovich approximation seems to give a good picture of formation of structure in the HDM
model, but continued unaccelerated motion of particles after shell crossing is clearly unrealistic. A useful
modification of Zel’dovich’s approximation is to assume that particles move ballistically until shell-crossing,
at which point they stick together. This is described by Burger’s equation, and gives infinitesimally thin
walls. This is also obviously unrealistic, but actually receives some justification if we think of the Universal
expansion adiabatically stretching a self-gravitating sheet. If the thickness of the sheet is T and the surface
density Σ, then the acceleration of a particle at the surface is r̈ ∼ GΣ, and the frequency of oscillation of
particles through the sheet is

ω ∼
√
r̈

T
∼
√
GΣ

T
. (49)

Now the surface density decreases as Σ ∝ 1/a2 for a sheet expanding in the transverse direction at the
Hubble rate, so applying the law of adiabatic invariance r = A cos(ωt) with amplitude A ∝ 1/

√
ω and

requiring A ' T we find that the (physical) thickness must evolve as

T ∝ a2/3. (50)

This increases with time, but not as fast as the scale factor a(t), so in comoving coordinates the sheet should
indeed become thin.

Another nice feature of the Zel’dovich approximation is that one can compute the non-linear power
spectrum analytically in terms of the initial power spectrum, as described in detail in chapter ??.

3.4 Press-Schechter Mass Function

The Press-Schechter approximation is designed for hierarchical type initial fluctuation fields. It provides one
with a useful approximation for the differential mass function n(M) = dN(> M)/dM , where the cumulative
mass function N(> M) is the comoving number density of bound structures with mass > M .

The idea is that one identify two quantities: The first is the fraction of space where the initial density
contrast field δ(r), when filtered with a kernel of mass M , lies above the threshold δcrit for formation of
non-linear condensations.

f(δ > δcrit;M) =

∫ ∞
δcrit/σ(M)

dν√
2π

exp
(
−ν2/2

)
. (51)

The second is the fraction of mass in objects more massive than M

f(> M) =

∫ ∞
M

dMMn(M). (52)

Differentiating (51) and (52) with respect to M and equating we get

n(M) =
δcritdσ(M)/dM√

2πMσ2(M)
exp
(
−δ2

crit/2σ
2(M)

)
(53)

While hard to justify rigorously, the idea obviously contains an element of truth, and moreover seems to
give predictions which agree with the results of N-body experiments.

If one assumes a power-law spectrum P (k) ∝ kn then the variance as a function of smoothing mass M
is also a power law, σ2(M) ∝ M−(n+3)/3. In ‘hierarchical models’ (those with n > −3) the mass variance
increases with decreasing mass. At sufficiently low masses we must have σ � δcrit and the exponential
factor becomes close to unity and the theory predicts a power-law differential mass function. For n = −2,
for instance, which is the slope of the CDM spectrum around the mass scale of galaxies the theory predicts
n(M) ∝ M−5/6. At high masses, when δcrit/σ(M) starts to exceed unity the exponential factor becomes
very small. The general prediction is for a power-law mass function which becomes exponentially cut off
above some characteristic mass scale; the mass M? where σ(M?) ' 1. This is just the kind of behavior seen
in the galaxy luminosity function and also in the cluster mass function.
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3.5 Biased Clustering

In the Press-Schechter theory, collapsed objects are associated with regions where the initial over-density,
smoothed on an appropriate mass-scale, is sufficiently large. A consequence of this is that objects on the
high end of the mass function — those with M &M? that is — will tend to have amplified large large-scale
clustering properties. Their clustering is said to be positively biased. The effect is illustrated in figure 9
which shows how the density of over-dense regions is modulated by long wavelength modes of the density
field. This effect is fairly obvious, but what is less obvious is how the strength of the modulation increases
as one raises the threshold. This is consequence of the peculiar property of a Gaussian distribution. The
Gaussian distribution is P (ν) ∝ exp

(
−ν2/2

)
. In the vicinity of some value ν = ν0 the distribution for

∆ν = ν − ν0 is P (∆ν) ∝ exp
(
−(ν0 + ∆ν)2/2

)
. Expanding the quadratic factor in the exponential, and

assuming ν0 � ∆ν gives
P (∆ν) ∼ exp(−ν0∆ν). (54)

Thus a Gaussian looks locally exponential: P (∆ν) ∼ exp(−∆ν/σ∆ν) with exponential scale length σ∆ν =
1/ν0 which decreases with increasing ν0. Thus the further out we go on the tail of a Gaussian the steeper
the distribution becomes.

If we add a positive background field δb, the fractional change in the probability to exceed the threshold
is then ∆P/P ' ν0δb/σ. The fluctuation in the number density of upward excursions is then

1 +
δn

n
= 1 + bδb (55)

where the bias factor is

b =
ν0

σ
=
δcrit

σ2
. (56)

Since δcrit is constant here, the bias factor rapidly increases with the mass of the objects (because σ2(M)
decreases with increasing mass). This is the linearized bias; valid for very small δb, such that bδb � 1. It is
not difficult to show that for δb . 1, the density of upward fluctuations is proportional to exp(bδb). Thus
the density of objects is the exponential of the background field.

One solid application of this theory is to clusters of galaxies; these are the most massive gravitationally
collapsed objects, and so are naturally identified with particularly high peaks. For a long time, the very
strong clustering of such objects was a puzzle; they have a correlation length of about 20Mpc as compared to
about 5Mpc for galaxies. Now we understand that this is just about what one would expect given Gaussian
initial density fluctuations. It is tempting to apply this theory also to galaxies, but there the connection
between theory and observation is more tenuous. However, at high redshift one would expect the rare, most
massive galaxies to be the analog of very massive clusters today, and this theory then provides a natural
explanation for the rather strong clustering of ‘Lyman-break’ galaxies at z ∼ 3.

3.6 Evolution of the cluster mass function

• the cluster mass- or X-ray luminosity-function has a form rather similar to the galaxy luminosity
function with a ‘knee’, above which the number of clusters drops exponentially

• the evolution of the cluster mass function n(M)dM depends on

1. the initial seeds for structure

2. how the structure grows (which depends on expansion history)

3.6.1 Self-similar evolution

• during the matter dominated era

– which, it used to be thought continued up to the present day,

the ‘background’ cosmology is ‘scale invariant’: density, scale factor etc. just vary as power laws with
time.

• and the primordial fluctuations are also approximately scale invariant
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Figure 9: The upper panel shows a realization of a Gaussian random noise field. This is supposed to
represent the initial Gaussian density perturbation field δ(r). The horizontal dashed line is supposed to
represent the threshold density required in order for a region to have collapsed. The lower trace shows the
‘excursion set’ for this threshold (here taken to be 1.8 times the root mean squared fluctuation. This function
is one or zero depending on whether f(x) exceeds the threshold. The positive parts of the excursion set
are randomly distributed with position. The lower panel shows the same thing, but where we have added
a long-wavelength sinusoidal ‘background’ field. Clearly, and not surprisingly, the background field has
modulated the density of the regions exceeding the critical threshold.
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– e.g. Gaussian random field with power-law power spectrum ∆2
ρ(k) ≡ k3Pρ(k) ∝ kn+3

– where k is a ‘co-moving’ wavenumber k = a(t)kphys

– and n ' −1 on relevant scales (spectral index varies slowly with wavelength

the fact that (as we will see later) the density fluctuations grow with time as ∆ρ/ρ ∝ a(t) ∝ 1/(1 + z)
means that the wave-number (inverse comoving scale) of non-linearity grows like

• k? ∝ (1 + z)2/(n+3)

• and hence the characteristic mass (knee of the mass function) varies as

• M? ∝ k−3
? ∝ (1 + z)−6/(n+3)

• which is quite a strong rate of evolution

log(1/k)

log(Δ2
ρ ∼ k3P(k))

1

Δ2
ρ ∝ kn+3/(1 + z)2

k−1⋆ (z = 0)

k−1⋆ (z > 0)

log(M)

log(MN( > M))

M⋆(z = 0)M⋆(z > 0)

k⋆ ∝ (1 + z)2/(n+3) M⋆ ∝ (1 + z)−6/(n+3)

Figure 10: Self-similar model
for evolution of the cluster
mass function. Left panel
show the evolution of the power
spectrum of density perturba-
tions for (nearly) scale invari-
ant initial conditions. In a
Einstein-de Sitter model this
evolves with time as (1 + z)2 so
the ‘characteristic scale of non-
linearity k−1

? increases with
time as a power-law also. Right
hand panel shows mass func-
tion.

• the radius scales like the cube root of the mass divided by the density

• the latter scales like ρ ∝ (1+3)3 so the characteristic radius scales as R? ∝ a/k? ∝ (1+z)−1(1+z)−2/n+3

or

• R? ∝ (1 + z)−(n+5)/(n+3)

• and the characteristic temperature (from hydrostatic equilibrium) goes like T? ∝M?/R? or

• T? ∝ (1 + z)(n−1)/(n+3)

– the idea here is that the clustering is growing ‘hierarchically’ with small halos merging into larger
ones as the universe ages

– this is a highly complex process – at the time these models were developed it was not possible to
model this using hydrodynamical simulations. Even today this is challenging.

– the beauty of the model is that the scale invariance of the initial fluctuations and the background
within which these are evolving means that one can predict the population at one time from
observations at another simply by scaling the physical quantities appropriately

• this model worked quite well, but not perfectly

– understandable since lower-mass clusters were quite likely to have been affected by early energy
ejection

– gives the gas an entropy larger than would have arisen from shocking in the self-similar evolution

but even allowing for this (e.g. focussing on high-mass end of distribution function) there was a problem
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• models predicted too rapid evolution

• this was an early indications of the need for dark-energy or cosmological constant (ΛCDM) (e.g. Pat
Henry)

– along with problems with the age of the stars vs. age of the universe

3.7 Davis and Peebles Scaling Solution

The goes beyond the self-similar scaling and attempts to determine the slope of the two-point correlation
function in the non-linear regime from the slope n of the initial power spectrum, assumed to be power-law
like with P (k) ∝ kn.

The original discussion was couched in terms of the BBGKY hierarchy, but the essential result can be
easily obtained from conservation of energy considerations, much as we did for the accretion onto a point
mass.

With the initial spectrum for the density fluctuations δ and with ∇2φ = 4πGρδ, so δφk = 4πGρδk/k
2

the root mean square potential fluctuations on scale r are

〈δφ2〉1/2r ∼
[∫

d3kk−4knW̃r(k)

]1/2

(57)

where W̃r(k) is the transform of the smoothing kernel, which falls rapidly for k � 1/r. This gives

〈δφ2〉1/2r ∝ r(1−n)/2. (58)

In terms of mass scale, M ∝ r1/3 this is

〈δφ2〉1/2r ∝M (1−n)/6. (59)

One the other hand, in the non-linear regime, we have a power-law mass auto-correlation function ξ(r) ∝ r−γ .
Now imagine the mass distribution to be a set of randomly distributed clumps of size r and over-density
δ∗ � 1. The fraction of space occupied by the clumps is f ∼ 1/δ∗, so the density fluctuation variance is
ξ(r) ' 〈δ2〉 ∼ fδ2

∗ ∼ δ∗. The mass of a lump is M ∼ ρδ∗r
3, so the characteristic mass of clumps of size r is

M ∝ r3−γ . The binding energy of clumps then scales with their radius and mass as

δφ ∼M/r ∝ r2−γ ∝M (2−γ)/(3−γ). (60)

Equating (59) and (60), we obtain the relation

γ =
9 + 3n

5 + n
(61)

which would fit with the empirically observed slope γ ' 1.8 for a white noise spectrum n = 0.
While the derivation here is similar to that for spherical accretion, the result is much less robust. While

it makes perfect sense to say that the binding energy of structures when they first form is given, within a
geometrical factor of order unity, by the initial binding energy, the calculation here assumes that even when
much larger mass objects have collapsed, the small clumps still preserve the binding energy with which they
are born. This is not likely to be the case, as there will be transfer of energy between the different scales of
the hierarchy. As we have argued above, entropy considerations suggest that such interactions will tend to
erase sub-structure. Numerical simulations do not provide much support for this theory.

3.8 Cosmic Virial Theorem

The cosmic virial theorem (Davis and Peebles again) attempts to relate the low order correlation functions
for galaxies to the relative motions of galaxies and thereby obtain an estimate of the mass-to-light ratio of
mass clustered along with galaxies.

In essence, their argument is as follows: Assume that galaxies cluster like the mass — this means that

the excess mass within distance r of a galaxy grows like M ∝
r∫
d3r ξ(r) ∝ r3−γ . The potential well depth

is then δφ ∼ GM/r ∝ r2−γ . One would expect the relative velocity of galaxies at separation r to scale as

σ2(r) ∝ r2−γ ' r0.2 (62)
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This prediction seems to be remarkably well obeyed on scales from a few tens of kpc out to about 1 Mpc (and
one would not expect the result to hold at larger separations where things have yet to stabilize anyway).

From the size of the peculiar motions, one infers that the mass-to-light ratio of material clustered around
galaxies on scale ∼ 1 Mpc or less is M/L ' 300h in solar units. If representative of the universal value, this
would imply Ω ' 0.2. This is similar to the mass-to-light ratio from virial analysis of individual clusters
of galaxies, and provides strong supporting evidence for copious amounts of dark matter. It also supports
the hypothesis that the galaxies cluster like the mass, and therefore that the universal density parameter is
Ω ' 0.2 rather than the aesthetically pleasing Ω = 1.
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