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1 Introduction

This lecture develops the formalism of ‘tensor calculus’. We closely follow the approach and terminology of
Bernard Schutz’s textbook.

The first section deals with special relativity in ordinary rectilinear coordinates. The goal here is to make
more precise concepts we have already introduced. We introduce basis vectors and their equivalents for 1-
forms and tensors and we show how these things transform under boosts and/or rotations. We also introduce
the concept of 1-forms and tensors as scalar valued functions of vectors. We briefly discuss symmetries and
finish with the definition the derivatives of vector and tensor fields, along with path derivatives, and the
various different notations for these things.

The second section extends this to arbitrary curvilinear coordinate systems, where, in the definition of
the derivative – the so-called ‘covariant derivative’ – we have to worry about how the basis vectors vary
with position. We define the ‘connection’ appearing in the covariant derivative and we show how this is
related to, and can be determined explicity from, the metric tensor. All of this is still in the domain of
flat (i.e. Minkowskian) space-time. All of the results and constructs, however, are still valid on a curved
manifold, and it is formally then a relatively straightforward jump – though a conceptually massive one –
to differential geometry in curved space-time.

2 Tensor calculus in rectilinear coordinates

2.1 Frames of reference

We concentrated before on frames of reference of observers that are boosted with respect to each other.
More generally, reference frames can be rotated with respect to each other also. So these reference frames
form a 6-parameter family determined by the boost velocity v and the three ‘Euler angles’ defining the
spatial rotations.

The physical quantities we deal with may be classified as scalars, vectors or tensors according to how
they transform under such changes of coordinate system.

2.2 Lorentz scalars

Lorentz scalars are measurable quantities whose values are independent of the observer’s coordinate frame.

2.3 Vectors

The prototype 4-vector is the displacement vector – the space-time separation ~∆x between two events – with
components, in some observer’s frame, {∆xα} = (c∆t,∆x,∆y,∆z).
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An entity ~V with 4 components {V α} is a 4-vector if its components transform under coordinate trans-
formations in the same way as the components of ~∆x. We have seen various examples before such as the
particle current density ~n, the charge current density ~j and the electromagnetic potential ~A.

2.3.1 Basis vectors

We can construct a 4-vector ~V – a frame-independent entity – as

~V = V α~eα (1)

where the set {V α} for α = 0, 1, 2, 3, are the components and where the set {~eα} are 4 basis vectors.
The components may have physical dimensions other than length, but they must all be the same. For
example, the components (cn,vn) of the particle current density are [nα] = L−2T−1. The basis vectors are
dimensionless constant vectors.

Don’t confuse the index α on ~eα with the index on the component V α. It is in the wrong place, for one
thing, being downstairs. Here α is a label that identifies which of the 4 basis vectors we are dealing with.
Each one of the 4 basis vectors having, itself, 4 components.

We use the notation
~V −→

O
V α (2)

to indicate that ~V has components {V α} in the frame O.
We introduce here the additional notation

V α = (~V )α (3)

where the frame involved is indicated by the superscript which may be α, α′ etc..
There is, in general, some freedom in the choice of basis. Here we use only the coordinate basis vectors.

These point along the coordinate axes and have unit length: ~e0 → (1, 0, 0, 0) and ~e1 → (0, 1, 0, 0) . . . , or,
more succinctly

(~eα)β = δβα. (4)

So the coordinate basis vectors as just like the unit vectors i, j,k that point along the x, y, z axes in
3-space, and, in terms of which we construct 3-vectors like r = xi + yj + zk. Equation (4) says that these
basis vectors are orthogonal like i, j and k. One would not say that they are orthonormal like i, j and k
since the norm of the 0th basis vector is actually negative.

2.3.2 Transformation of coordinates and basis vectors

According to an observer who is boosted and/or rotated with respect to the un-primed observer the prototype
vector has components {∆xα′} = (c∆t′,∆x′,∆y′,∆z′) where

∆xα
′

= ∆xα
∂xα

′

∂xα
= Λα

′
α∆xα (5)

where the matrix Λα
′
α is independent of position and is the generalisation of the x-directed Lorentz boost

matrix we considered, for the most part, before. Note that translations of the reference frame – which are
included in the Poincaré group – are not involved here as we are only concerned with displacements between
events.

The components of a 4-vector ~V therefore transform as

V α′
=
∂xα

′

∂xα
V α (6)

but we demand that ~V be frame independent so

~V = V α′
~eα′ =

∂xα
′

∂xα
V αeα′ = V αeα (7)
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where, in the last equality, we see that

~eα′ =

(
∂xα

′

∂xα

)−1

~eα (8)

so the basis vectors are ‘transformed’ using the matrix that is the inverse of that used to transform the
components.

We put ‘transformed’ in quotes here to emphasis that this is not expressing the transformation of the
components of the basis vectors. The components (~e0)α of the basis vector ~e0, for instance, transform
under boosts/rotations just like the components of any vector, i.e. according to (6). Rather (8) is a rule for
constructing a new, different , set of 4 basis vectors {~eα′} from the original set {~eα}.

Now the inverse of the matrix ∂xα
′
/∂xα is just ∂xα/∂xα

′
. If this is not obvious, it may help to consider

{xα} = (x, y) and {xα′} = (ξ, η) and write out the matrix product [∂(x, y)/∂(ξ, η)][∂(ξ, η)/∂(x, y)]. The
upper-right component, for example, is

∂x

∂ξ

∂ξ

∂y
+
∂x

∂η

∂η

∂y
=

(
∂ξ

∂y

∂

∂ξ
+
∂η

∂y

∂

∂η

)
x (9)

but the operator in parentheses is just ∂/∂y. So this is ∂x/∂y = 0. And doing the same for the other
components we get the matrix [∂(x, y)/∂(x, y)], whose components are the identity matrix. QED.

Replacing ∂xα
′
/∂xα ⇒ Λα

′
α and (∂xα

′
/∂xα)−1 = ∂xα/∂xα

′ ⇒ Λαα′ the transformation laws for the
components and the basis vectors are

V α′
= Λα

′
αV

α and ~eα′ = Λαα′~eα . (10)

What we are doing here is precisely analogous to what we do in Euclidean 3-space with a vector which
we write as r = xi + yj + zk. If we rotate the coordinate system, nothing happens to any of the vectors
here. But is is convenient to construct a new set of basis vectors i′, j′,k′ that point along the new, rotated,
axes and in terms of which the same vector r is given by r = x′i′ + y′j′ + x′k′. Thus it should be that the

components of the transformed basis vectors are (~eα′)β
′

= δβ
′

α′ . This is readily verified1 since

(~eα′)β
′

= (Λαα′~eα)β
′

= Λαα′(~eα)β
′

= Λαα′Λβ
′
β(~eα)β = Λαα′Λβ

′
βδ
β
α = Λβ

′
αΛαα′ = δβ

′

α′ . (11)

So the transformed set of basis vectors are indeed an orthogonal set aligned with the new axes.

2.3.3 The norm and scalar product of vectors

Just as the invariant interval (proper distance squared) between two events is ∆s2 = −(c∆t)2 + (∆x)2 +
(∆y)2 + (∆z)2 = ηαβ∆xα∆xβ, where, as always ηαβ = diag{−1, 1, 1, 1} is the Minkowski metric, we can
define the norm of a vector with components Aα to be the frame invariant (i.e. scalar)

~A · ~A = ηαβA
αAβ (12)

and which we will also denote by ~A2.
The norm of the sum of two vectors is ~A+ ~B is ~A2 + 2 ~A · ~B + ~B2, which is a scalar, as are ~A2 and ~B2,

so ~A · ~B is also a scalar – it is the called scalar product of ~A and ~B

~A · ~B = ηαβA
αBβ. (13)

We found earlier that the components of the Minkowski metric are invariant under boosts. The same is
true for spatial rotations (as the spatial part of ηαβ = diag(−1, 1, 1, 1) is just diag(1, 1, 1) = δij).

1In the first step we apply the rule for transforming the basis vectors. In the second we invoke linearity. In the third we
apply the rule for transforming the components of a vector. In the 5th we use (~eα)β = δβα and in the last we use the fact that

Λα′
α and Λα

α′ are inverses of one another.
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2.3.4 The scalar products of the basis vectors

Since the components of the basis vectors are (~eµ)α = δαµ the 4x4 matrix of scalar products of the basis
vectors is, from (4) and (13),

~eµ · ~eν = ηαβδ
α
µδ

β
ν = ηµν . (14)

This is an illustration of something we will see later. If we write ~A · ~B = g( ~A, ~B) where g( , ) is a
linear function of it’s arguments and is some geometric (i.e. frame independent) object, then we obtain its
components – the matrix of numbers that define it – by applying it to the pairs of basis vectors. Here the
components are gαβ = ηαβ.

2.4 1-forms

Previously we drew the distinction between the contravariant components of a vector like V α and the
covariant components Vα = ηαβV

α, which are the same except for a change of sign of the 0th component.
And we said that covariant vectors are sometimes called ‘1-forms’. Note that ‘dotting’ the covariant and
contravariant components gives the scalar product ~V 2 = VαV

α.
Here we take a slightly different, but equivalent, approach which may seem at first to be a bit heavy

handed, but which, especially once we come to curvilinear coordinates, helps by providing a precise language.
This is the geometrical approach popularised by MTW.

2.4.1 Definition of 1-forms and the contraction

We define 1-forms as linear maps of a vectors to scalars. We denote them with a tilde (e.g. p̃ denotes a
1-form). As a function this is p̃( ), whose value, given a vector ~V as its argument, is a scalar. Like a vector,
a 1-form is a geometric entity, which we think of as having a frame-independent existence.

We define the αth component of p̃ to be the value of p̃( ) when applied to the αth basis vector

pα = p̃(~eα) (15)

And we also use the notation
pα = (p̃)α (16)

to denote components, much like V α = (~V )α for vectors.
Linearity implies p̃( ~A) = p̃(Aα~eα) = Aαp̃(~eα), or

p̃( ~A) = Aαpα (17)

which we call the contraction of ~A with p̃. It is effectively the same as the scalar product, but it is actually
a more primitive operation than the scalar product as it does not require that there be a metric.

Comparing this with the definition of the scalar product (13) we see that p̃( ~A) = ~p · ~A if pα = ηαβp
α.

2.4.2 Visualising 1-forms and vectors

The ‘prototype’ 1-form is the 4-gradient of a scalar field φ(~x) which we denote by d̃φ:

d̃φ −→ ∂αφ (18)

or, equivalently, (d̃φ)α = ∂αφ = φ,α, and where the components of the derivative operator here are {∂α} =
(c−1∂t,∇).

If we make the contraction with some displacement vector we get d̃φ( ~∆x) = ∆xα∂αφ which is just the
change in φ over the displacement ~∆x.

We may visualise d̃φ as a stack of locally parallel 3-surfaces of constant φ. I.e. the analogue of 1D
contours on a 2D map, with the ‘magnitude’ of d̃φ being proportional to density of, or the inverse spacing
between, the 3-surfaces. This is illustrated in figure 1.

If we visualise the prototypical vector ~∆x as an arrow then the scalar d̃φ( ~∆x) = φ,α∆xα is the number

of iso-φ surfaces ‘pierced’ by the vector ~∆x
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It is very natural to represent the 4-momentum of a particle, or a wave-packet, as a 1-form. For example,
for a family of particles emerging from a common starting point, the Hamilton-Jacobi formalism tells us
that the relativistic 3-momentum and energy (in the ‘lab’-frame say) are

p = ∇S(t,x) and E = −∂S(t,x)/∂t (19)

where S(t,x) is the action. But the action is a Lorentz scalar. So pα = (−E/c,p) = ∂αS are the components
of a 1-form:

p̃ = d̃S −→
lab

(−E/c,p). (20)

ct

x
←

S(t, x) = constant

(t0, x0)

p̃ = d̃S → ∂μS = (−E/c, p)
4-momentum 1-form

action : S = ∫ dtL

⃗U

energy in frame of 
observer with 4-

velocity :⃗U → (c, 0)
E = − p̃( ⃗U)

Figure 1: The 4-momentum 1-form. The thin curves are trajectories of particles emanating from a common
starting point. The heavy curves are surfaces of constant action. The Hamilton-Jacobi formalism tells us
that p = ∇S and E = −∂tS where the action S, for a relativistic particle, is a Lorentz scalar. The arrow
indicates the world-line of an observer who happens to be at rest in the chosen reference frame. The particle
energy that that observer would measure is E = −p̃(~U) where p̃(~U) is the number of iso-S surfaces pierced
by the arrow ~U .

If we take this 1-form and apply it to the 4-velocity of an observer who is at rest in the lab frame (i.e.
for whom ~U −→

lab
(c,0)) we get

p̃(~U) = −E (21)

the lab-frame energy.
But this is a scalar equation so it tells us that, were we to use the 4-velocity of some other observer here,

we would get minus the energy that that observer would see.
The same result applies quantum mechanically for the particle energy measured by an observer from

the wave-function of a particle prepared in this state (well defined initial location but somewhat uncertain
momentum). The wave function here being ψ ∼ eiS/~ and the energy and momentum operators being
E = ~∂t and p = −~∇.

Also, if we have a classical nearly monochromatic wave packet with φ(~x) = φ0 cos(k · x− ωt), the total
energy and momentum for the packet are proportional to k̃ → (−ω/c,k) and the phase is k ·x−ωt = k̃(~x).

2.4.3 The basis for 1-forms

In a similar manner to what we did for vectors, we can express a 1-form p̃ as a sum of components times
basis 1-forms:

p̃ = pαω̃
α (22)
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where we have a set of 4 basis 1-forms {ω̃α}.
As with vectors, there is, in principle, freedom for how we choose the basis, but we have already fixed

the components by stipulating that they are given by letting p̃ act on the basis vectors: pα ≡ p̃(~eα). So with
that choice, we may ask: what are the basis 1-forms?

To answer this, we let p̃ = pαω̃
α act on ~A = Aβ~eβ to obtain p̃( ~A) = pαA

βω̃α(~eβ). But we also have

p̃( ~A) = pαA
α which implies that ω̃α(~eβ) = δαβ . But any 1-form acting on the βth basis vector is the βth

component of that 1-form. I.e. ω̃α(~eβ) = (ω̃α)β so the components of the 1-form basis are ω̃0 → (1, 0, 0, 0)
and ω̃1 → (0, 1, 0, 0) etc. or, more succinctly

(ω̃α)β = δαβ (23)

so the same as the components of the basis vectors.

2.4.4 Transformation of 1-form components and basis 1-forms

Obtaining the transformation for 1-form components is straightforward. A 1-form (a frame independent
entity) acting on a vector ~A is a scalar so p̃( ~A) = pαA

α = pα′Aα
′
. The components of ~A transform according

to Aα
′

= Λα
′
αA

α so the components pα must transform according to the inverse of the matrix:

pα′ = Λαα′pα (24)

which looks a lot like the transformation of the basis vectors: ~eα′ = Λαα′~eα, but it really, of course, quite
different as the things being transformed here are numbers, not vectors.

To get the transformation of the basis 1-forms we simply appeal to the fact that p̃ = pαω̃
α = pα′ω̃α

′

from which, with the transformation law for the components above gives

ω̃α
′

= Λα
′
αω̃

α (25)

i.e. opposite to the transformation for the components pα of the 1-form and also opposite to the transfor-
mation for the basis vectors ~eα but the same as for the vector components V α.

A simple trick for getting the transformation laws for components or bases for either vectors or 1-forms
is to remember that the first (i.e. row) index on the Λ-matrix always goes upstairs. The indices are then
fixed by the requirement that repeated indices must be upstairs-downstairs pairs and non-repeated indices
should appear in the same place on both sides of an equation.

2.4.5 Magnitude and scalar products of 1-forms

• we define the squared magnitude or norm of a 1-form p̃2 ≡ p̃ · p̃ to be the same as that of the
corresponding vector

– p̃2 = ~p 2 = ηαβp
αpβ

• or, since pα = ηανpν ,

– p̃2 = ηαβpαpβ

• We define the scalar product of 1-forms:

– p̃ · q̃ ≡ [(p̃+ q̃)2 − p̃2 − q̃2]/2

– in terms of components, p̃ · q̃ = −p0q0 + p1q1 . . .

– which is the same as the contraction p̃(~q) = p0q
0 + p1q

1 . . .

2.5 Tensors

Previously, we said that e.g. a matrix Tαβ is the matrix of (contravariant) components of a tensor T if the
Tαβ transform as Tα

′β′
= Λα

′
αΛβ

′
βT

αβ. That means, for example, that dotting this with the (covariant)
components Vα = ηαβV

β of a vector gives the components of a contravariant vector Uα = TαβVβ.
Here we will take an alternative, but equivalent, approach which is to define tensors as scalar valued

linear functions of vectors (or 1-forms as appropriate). The main thing we get from this is bases for tensors
as outer products of vector or 1-form bases. Let’s start with covariant tensors.
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2.5.1 The definition of a
(

0
N

)
tensor

A
(

0
N

)
tensor is a function of N vectors that returns a scalar and is linear in each of its arguments.

A 1-form has these properties (for N = 1) and so is a
(

0
1

)
tensor.

The scalar product also has these properties (for N = 2) and is therefore an example of a
(

0
2

)
tensor.

We call this function the metric tensor , and denote it by g. Note that this is not to be confused with a
3-vector, and is and definitely not the Newtonian gravity vector.

The metric is defined by the rule

g( ~A, ~B) = ~A · ~B. (26)

We can think of g( , ), with empty ‘slots’ for two vectors, as another frame-independent entity.
As with 1-forms, we define the components of a tensor to be its value when applied to arguments that

are basis vectors. As there are 4 basis vectors, a
(

0
N

)
tensor has 4N components, and these are labelled by

N greek subscript ‘indices’.
For example, the components of the metric tensor are

gαβ = g(~eα, ~eβ) = ~eα · ~eβ = ηαβ. (27)

2.5.2 Outer products and bases for tensors

Another example of a
(

0
2

)
tensor is the outer product of two 1-forms p̃ ⊗ q̃, which is defined such that,

acting on two vectors ~A and ~B, it returns the scalar p̃( ~A)q̃( ~B). Previously, we had the stress-energy tensor

for particles: T =
∫ d3p

p0
f(r,p)~p ~p, the combination ~p ~p being an outer product of two vectors. Using the

notation here, we could write T =
∫ d3p

p0
f(r,p)p̃⊗ p̃ which would be a

(
0
2

)
tensor.

We can use the (4 by 4 matrix of) outer products of the basis 1-forms ω̃α⊗ ω̃β as a ‘basis’ for
(

0
2

)
tensors.

I.e. we can express a general
(

0
2

)
tensor T( , ) as a linear double sum of these

T( , ) = Tαβ ω̃
α( )⊗ ω̃β( ) (28)

where the µ, ν component of T – defined as usual as the (scalar) value of the result of applying this function
to two basis vectors ~eµ and ~eν – is

Tαβ ω̃
α(~eµ)ω̃β(~eν) = Tαβδ

α
µδ

β
ν = Tµν (29)

The transformation of the
(

0
2

)
basis tensor ω̃α ⊗ ω̃β is straightforward: we simply replace the basis

1-forms by their primed versions ω̃α
′

= Λα
′
αω̃

α.
The transformation of the components comes from the requirement that T be frame independent, so

Tα′β′ω̃α
′ ⊗ ω̃β′

= Tαβω̃
α ⊗ ω̃β which gives

Tα′β′ = Λαα′Λββ′Tαβ. (30)

It is straightforward to extend this to N > 2.

2.5.3 The metric as a mapping of a vector to a 1-form and vice versa

Consider g(~V , ). It is evidently a 1-form, since, given another vector as the missing argument, it returns a
scalar, and it is linear function of that argument. Let’s call it Ṽ = g(~V , ) and ask: what are its components?

Its αth component is Vα = Ṽ (~eα) = g(~V ,~eα) = ~eα · ~V = ~eα · V β~eβ = ηαβV
β.

So Vα = ηαβV
β and V α = ηαβVβ, where ηαβ is the inverse of ηαβ and which also has components

diag(−1, 1, 1, 1).
So this agrees with what we found previously: matrix multiplication by ηαβ and ηαβ are respectively index

lowering and raising operators: If ~V has components (a, b, c, d) (i.e. ~V → (a, b, c, d)) then Ṽ = g(~V , ) →
(−a, b, c, d).

We can similarly formalise the mapping affected by the inverse of the metric as follows. Consider the
function g−1( , ) defined such that

g−1(p̃, q̃) = p̃ · q̃. (31)
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Now p̃ · q̃ = ~p · ~q = ηαβp
αqβ = ηαβη

αµpµη
βνqν so the components are g−1 → ηαβη

αµηβν = ηµν .
Given a 1-form p̃, consider g−1(p̃, ). This is a vector, since, given another 1-form to fill the empty slot,

we obtain a scalar. Let’s call it ~p. Letting that act on the αth basis 1-form ω̃α gives its αth component:
pα = ~p(ω̃α) = g−1(p̃, ω̃α) = g−1(pβω̃

β, ω̃α) = pβg
−1(ω̃β, ω̃α) = pβ(g−1)βα = ηαβpβ. So g−1 is indeed the

index raising operator.

2.5.4 The definition of a
(
M
0

)
tensor

A
(
M
0

)
tensor is a linear map from M 1-forms to a scalar. We’ve just seen an example: the inverse of the

metric tensor g−1( , ) is a
(

2
0

)
tensor.

For example, T =
∫ d3p

p0
f(r,p)~p⊗ ~p is a

(
2
0

)
tensor.

Another example of a
(

2
0

)
tensor is the outer product of two vectors ~U ⊗ ~V , which is defined such that

its value, given the two 1-form arguments p̃ and q̃ is ~U ⊗ ~V (p̃, q̃) = ~U(p̃)~V (q̃).
A general

(
2
0

)
tensor T can be expressed as a linear combination of the 4x4 array of bases ~eα ⊗ ~eβ with

coefficients Tαβ:
T( , ) = Tαβ~eα( )⊗ ~eβ( ) (32)

and the value of the function T( , ) given arguments ω̃µ and ω̃ν – i.e. the µ, ν component of T – is Tµν .
The transformation law for the components is obtained just as before by writing the same tensor in

terms of the primed frame tensor basis:

Tα
′β′

= Λα
′
αΛβ

′
βT

αβ. (33)

And the extension to M > 2 is also straightforward.

2.5.5 The definition of a
(
M
N

)
tensor

Finally, a ‘mixed’
(
M
N

)
tensor is a linear map of M 1-forms and N vectors to a scalar.

Consider, for example, a
(

2
1

)
tensor T( , , ) that takes 2 1-form arguments in the first two slots and a

vector in the third. The ordering is significant, but unfortunately it is hidden in the geometric notation.
This can be expressed as a linear combination of outer products of the 43 bases ~eα ⊗ ~eβ ⊗ ω̃γ :

T = Tαβγ~eα ⊗ ~eβ ⊗ ω̃γ (34)

with components Tαβγ = T(ω̃α, ω̃β, ~eγ) which transform as

Tα
′β′
γ′ = Λα

′
αΛβ

′
βΛγγ′T

αβ
γ . (35)

2.5.6 Raising and lowering tensors with g( , ) and g−1( , )

Just as the metric maps a vector ~V to a corresponding 1-form Ṽ = g(~V , ) and we can convert it back with
~V = g−1(Ṽ , ) we should be able to do the same kind of thing with tensors; i.e. we should be able to map

a
(
M
N

)
tensor to a corresponding

(
M−1
N+1

)
tensor. This is done in the following manner:

Consider the
(

1
2

)
tensor S constructed from a

(
2
1

)
tensor T as

S( , , ) = T( ,g( , ), ) (36)

with the understanding that the second argument of g( , ) is left empty.
Thus, when S is fed 3 arguments Ã, ~B, ~C, the second slot of T gets fed B̃ = g( ~B, ), which an appropriate

argument for this slot.
So S( , ~V , ) and T( , Ṽ , ) are identical

(
1
1

)
tensors for any ~V .

The tensor S can be expressed as a linear combination of the appropriate tensor bases:

S = Sαβγ~eα ⊗ ω̃β ⊗ ω̃γ (37)

where the components are Sαβγ = S(ω̃α, ~eβ, ~eγ) = T(ω̃α,g(~eβ, ), ~eγ)

9



But g = ηµν ω̃
µ ⊗ ω̃ν so g(~eβ, ) = ηµν ω̃

µ(~eβ)ω̃ν = ηβν ω̃
ν , and Sαβγ = T(ω̃α, ηβν ω̃

ν , ~eγ) so, invoking
linearity,

Sαβγ = ηβνT
αν
γ . (38)

So the components of S are indeed obtained from those of T simply by applying the index lowering
matrix – the Minkowski metric – to the appropriate index (the second one here).

While S and T are different tensors they are clearly completely determined from each other, and we use
the same symbol for their components and say, for example, Tαβγ = ηβνT

αν
γ .

2.5.7 Symmetries

• a
(

0
2

)
tensor T( , ) for which T( ~A, ~B) = T( ~B, ~A) ∀ ~A, ~B is symmetric

• and given an arbitrary tensor H( , ) one can define a symmetrised version H(S)( , ) by

– H(S)( ~A, ~B) = [H( ~A, ~B) + H( ~B, ~A)]/2

• and an antisymmetrised version H(A)( , ) by

– H(A)( ~A, ~B) = [H( ~A, ~B)−H( ~B, ~A)]/2

• in component form these expressions are

– H(S)αβ = [hαβ + hβα]/2 = h{αβ}/2

– H(A)αβ = [hαβ − hβα]/2 = h[αβ]/2

• where we have introduced the commutator h[αβ] and anti-commutator h{αβ}

• one can express the original tensor as H = H(S) + H(A)

• Symmetry properties are frame invariant.

2.6 Derivatives and path derivatives of vectors and tensors

Given a scalar field φ(~x), its gradient is the 1-form field d̃φ. So the derivative of φ (a scalar being a
(

0
0

)
tensor if you will) is the

(
0
1

)
tensor d̃φ→ (c−1φ,t,∇φ).

Given a parameterised path ~x(λ) → (ct(λ),x(λ)) with tangent vector ~U ≡ d~x/dλ → (cdt/dλ, dx/dλ),
the rate of change of φ along the path is

dφ/dλ = φ,µd~x/dλ = φ,µU
µ = d̃φ(~U). (39)

This would apply for an observer, with λ = τ , the proper time, and ~U being the 4-velocity.

The same is true for tensor (or vector) fields. The derivative of a
(
M
N

)
tensor field is a

(
M
N+1

)
tensor field

which, operating on the tangent vector ~U , gives the
(
M
N

)
tensor that is the rate of change of the original

tensor wrt λ along the path.
Consider, for example, the

(
1
1

)
tensor field

T(~x) = Tαβ(~x)~eα ⊗ ω̃β, (40)

the vector and 1-form bases being independent of location in flat space-time.
We define its path derivative as

dT

dλ
= lim

∆λ→0

T(~x(λ+ ∆λ))−T(~x(λ))

∆λ
. (41)

This is evidently a
(

1
1

)
tensor like T itself:

dT

dλ
=
dTαβ
dλ

~eα ⊗ ω̃β. (42)
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But dTαβ/dλ = Tαβ,γU
γ , so Tαβ,γ are the components of a

(
1
2

)
tensor, which we will denote by ∇T (even

though d̃T would seem more logical):

∇T ≡ Tαβ,γ~eα ⊗ ω̃β ⊗ ω̃γ (43)

which, acting on (or, in component form, contracted with) the tangent vector ~U gives dT/dλ.
Rather that writing dT/dλ = ∇T(~U), which is somewhat ambiguous, as it is not clear what index of

∇T is getting contracted with ~U , we tend to use the notation

dT/dλ = ∇~UT→ UγTαβ,γ (44)

where we note that if we work in terms of components there is no ambiguity.
The above equation defines the scalar differential operator

∇~U → Uγ∂γ (45)

which gives d/dλ along the path ~x(λ), or, in the case of an observer, along the world-line with 4-velocity ~U ,
of any entity.

A key assumption in the above is that the basis vectors and basis 1-forms are independent of location.
This is valid in flat space (or flat space-time) and using Cartesian (or Minkowski) coordinates and their
related coordinate basis vectors and 1-forms.

In the following section we see how things change – particularly the derivative operator – if we work in
arbitrary curvilinear coordinates.

3 Tensor calculus in curvilinear coordinates

In this section we will generalise the foregoing to arbitrary curvilinear coordinate systems. I.e. we will define
vectors, 1-forms and tensors as linear combinations of bases times components. The important change
here is that the coordinate transformation matrices and basis vectors and basis 1-forms become, in general,
position dependent. We will describe the roles of the metric and its inverse as a way of measuring lengths
or amplitudes of vectors and 1-forms and as a way to convert between them. And we will construct the
so-called ‘covariant derivative’ which is somewhat more complicated than in rectilinear coordinates because
we need to account for the variation of the bases as well as the components.

We should stress at the outset that we still consider here only special relativity; i.e. flat rather than
curved space-time. That is in order to keep things relatively straightforward at a conceptual level. But
essentially all of the results and machinery carry over to curved manifolds as they are concerned with what
happens locally – in the immediate vicinity of some point on the manifold where space-time is locally flat,
with curvature appearing only at 2nd order in position (for instance in 2nd derivatives of basis vectors).

In fact, most of the salient features are not highly dependent on the locally Minkowskian geometry of
4D space-time and are equally well illustrated by considering ordinary 2D Euclidean space in curvilinear
coordinates. Following Schutz, we will use 2D polar coordinates as an illustrative example.

Another difference with the previous section is that while there we were considering a family of coordinate
systems related to one and other by boost and/or rotations, here we just consider two coordinate systems;
one being the usual Cartesian system where the basis vectors are aligned with the coordinate axes and where
components measure physical distances, and the other being a single curvilinear coordinate system.

3.1 Vectors and 1-forms in curvilinear coordinates

Consider a flat Euclidean 2-space – a sheet of paper – on which we may have points (like events in special
relativity) and fields such as a grey-scale image. Over this we can lay a transparency on which are drawn
lines of a Cartesian, or ‘physical’, (x, y) coordinate grid, from which we can assign physical coordinates
to points, and we can also overlay a transparency covered with lines of constant curvilinear coordinates
ξ = ξ(x, y) and η = η(x, y). We shall sometimes refer to these systems as ‘frames’, by analogy with reference
frames in SR.
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3.1.1 Displacement vectors

Consider two neighbouring points with relative physical displacement vector (∆x,∆y). These have a cor-
responding displacement (∆ξ,∆η) in curvilinear coordinates which, for small ∆x and ∆y, will be linear in
(∆x,∆y). Representing these displacements as column vectors, we have[

∆ξ
∆η

]
=

[
∂ξ/∂x ∂ξ/∂y
∂η/∂x ∂η/∂y

] [
∆x
∆y

]
(46)

Or, letting ∆xα = (∆x,∆y) and ∆xα
′

= (∆ξ,∆η)

∆xα
′

= Λα
′
α∆xα (47)

where Λα
′
α represents the matrix above and where, as always, the first (second) index labels the rows

(columns):

Λα
′
α = ∂xα

′
/∂xα. (48)

We will assume that the inverse mapping is single valued and that if ∆ξ and ∆η are both zero then the
same is true for ∆x and ∆y – this requires that the determinant of the matrix Λα

′
α be non-vanishing.

An entity ~V with two components V α = (V x, V y) and V α′
= (V ξ, V η) is a vector if the components

transform in the same way as does the displacement vector.

3.1.2 1-forms as gradients of scalar fields

Consider now a scalar function of position φ(x, y). We define the 1-form d̃φ to be the gradient, whose
physical components are (∂xφ, ∂yφ), or

(d̃φ)α = φ,α. (49)

The change in φ over the interval ~∆x is the contraction

∆φ = ∆xαφ,α. (50)

which we also denote by d̃φ( ~∆x).
We take the components, in the (ξ, η) coordinate system to be (∂ξφ, ∂ηφ), or d̃φ −→

ξ,η
(d̃φ)α′ = (φ,ξ, φ,η),

in terms of which
∆φ = ∆xα

′
φ,α′ . (51)

This defines a set of 1-form fields, one for each possible scalar field, the transformation law for any one
of which may be expressed as matrix multiplication of row vectors

[φ,ξ, φ,η] =
[φ,x, φ,y]

[
∂x/∂ξ ∂x/∂η
∂y/∂ξ ∂y/∂η

]
(52)

or as
φ,α′ = Λαα′φ,α (53)

with

Λαα′ ≡ ∂xα/∂xα′
. (54)

As we saw previously, Λα
′
α = ∂xα

′
/∂xα and Λαα′ = ∂xα/∂xα

′
are matrix inverses of one another. This

ensures that the contraction ∆φ = d̃φ( ~∆x) is frame invariant.

3.1.3 Curves and path derivatives of scalars

We define a curve to be a parameterised path ~x(λ) which in the x, y system has components xα(λ) =
(x(λ), y(λ)) and in the ξ, η system has components xα

′
(λ) = (ξ(λ), η(λ)). If the path is sufficiently smooth

we can define the tangent vector to be ~V = d~x/dλ. The path derivative of the field φ(~x) along the curve is

dφ/dλ = φ,αdx
α/dλ = φ,α′dxα

′
/dλ (55)

or
dφ/dλ = d̃φ(~V ) = (d̃φ)α(~V )α (56)

i.e. the (coordinate sytem independent) contraction of the components of d̃φ and ~V .
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3.1.4 The coordinate basis vectors

Quite generally we want to write a vector ~V as equal to a sum of basis vectors times components:

~V = V α~eα (57)

and we want this to hold in an arbitrary frame. There is some freedom in how, exactly, to do this. What
we will describe here is the use of coordinate basis vectors.

As illustrated in figure 2, we take the basis vectors ~ex, ~ey in the (x, y) frame (the un-primed frame here)

to be of unit length and aligned with the x and y axes. That means that the components of ~∆x in the
(x, y) frame directly measure physical distances projected onto the axes. While it is somewhat tautological
we can say that these basis vectors have components ~ex → (1, 0) and ~ey → (0, 1) or, equivalently,

(~eα)β = δβα. (58)

These basis vectors are evidently orthonormal. If we were doing this in Minkowski space the basis vectors
would be orthogonal, but the norm of the time basis vector would be negative.

x

y

ξ = 0 ξ = 2 ξ = 4η = 0

η = 2

η = 4
Vξ ⃗e ξ

⃗e η

⃗e ξ

Vη ⃗e η⃗e x

⃗e y

curvilinear

coordinates

ξ(x, y)
η(x, y) ⇔ x(ξ, η)

y(ξ, η)
component basis


vector
⃗V = Vξ ⃗e ξ + Vη ⃗e η

physical

coordinates

⃗e ξ = ∂x
∂ξ

⃗e x + ∂y
∂ξ

⃗e y

⃗e η = ∂x
∂η

⃗e x + ∂y
∂η

⃗e y

⃗e ξ ⟶
x,y ∂(x, y)/∂ξ

⃗e η ⟶
x,y ∂(x, y)/∂η

Figure 2: The curved lines are contours of constant curvilinear coordinates (ξ, η). In 3-dimensions they
would be surfaces. An arbitrary vector like ~V can be expressed either as a sum of (ξ, η)-frame basis vectors
(~eξ, ~eη) times (ξ, η)-frame components, as indicated, or as a sum of the physical basis vectors (~ex, ~ey) times
physical components. As shown in the text, the physical components of ~eξ are ∂(x, y)/∂ξ and similarly for
~eη.

Since ~V = V α~eα is coordinate system independent, while the components transform like V α′
= Λα

′
αV

α,
the basis vectors must transform as

~eα′ = Λαα′~eα (59)

so the matrix that affects this transformation is the inverse of that involved in the transformation for the
components, as, of course, it has to be if the combination V α′

~eα′ be frame invariant.
This formula gives either of the pair of basis vectors ~eα′ = (~eξ, ~eη) as linear combinations of the physical

basis vectors ~eα = (~ex, ~ey). As discussed previously, this is not telling us how components of a vector
transform, it is telling us how to construct new vectors out of old ones.

One might ask: what are the components of these new basis vectors? The answer is again somewhat
tautological. For any vector ~V = V ξ~eξ + V η~eη, so the components of ~V = ~eξ are obviously (1, 0) and those

of ~V = ~eη are just (1, 0) or

(~eα′)β
′

= δβ
′

α′ . (60)
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These may look orthonormal, like the physical basis vectors, but they are not, because these are components
in the (ξ, η) frame and the components of the metric tensor in this frame are not in general diag(1, 1) as
they are in the (x, y) frame.

It is more interesting is to ask: what are the components of ~eξ and ~eη in the (x, y) frame? I.e. what are
the physical components of these basis vectors? The answer is

(~eα′)β = (Λαα′~eα)β = Λαα′(~eα)β = Λαα′δβα = Λβα′ = ∂xβ/∂xα
′
. (61)

so
~eξ −→

x,y
∂(x, y)/∂ξ and ~eη −→

x,y
∂(x, y)/∂η (62)

which means that ~eξ points along a line of constant η and ~eη points along a line of constant ξ. In higher
dimensional space, each basis vector points along the line where the other coordinates are constant.

3.1.5 Coordinate basis 1-forms

As mentioned, the prototype 1-form is the gradient of a scalar p̃ = d̃φ −→
x,y

∂αφ. We can write this as

p̃ = pxω̃
x + pyω̃

y where (ω̃x, ω̃y) are the (x, y)-frame basis 1-forms. Or

p̃ = pαω̃
α. (63)

Just as we visualise d̃φ as a stack of iso-φ contours, we can visualise the basis 1-forms as stacks of iso-x and
iso-y contours, as illustrated in figure 3. The coordinate basis 1-forms are ω̃x = d̃x and similarly ω̃y = d̃y or

ω̃α = d̃xα (64)

with components ω̃x → (1, 0) and ω̃y → (0, 1), or

(ω̃α)β = δαβ . (65)

That’s all in the physical (x, y)-frame. Invariance of the scalar d̃φ(~V ) = (d̃φ)αV
α = φ,αV

α along with the
transformation law for the components of a vector implies that the components of a 1-form must transform
as

pα′ = Λαα′pα (66)

so, as p̃ is invariant also, the basis 1-forms in the curvilinear frame must be

ω̃α
′

= Λα
′
αω̃

α = ∂xα
′
/∂xαω̃

α. (67)

The (x, y)-frame basis 1-forms are just {ω̃x, ω̃y} = {d̃x, d̃y} so ω̃ξ = ∂ξ/∂xαd̃xα, which is just d̃ξ, just
the gradient of ξ considered as a function of x and y. Similarly ω̃η = d̃η.

The physical (i.e. (x, y)-frame) components of these basis 1-forms are

(ω̃α
′
)β = (Λα

′
αω̃

α)β = Λα
′
α(ω̃α)β = Λα

′
αδ

α
β = Λα

′
β = ∂xα

′
/∂xβ (68)

so
ω̃ξ −→

x,y
(∂ξ/∂x, ∂ξ/∂y) and ω̃η −→

x,y
(∂η/∂x, ∂η/∂y) (69)

3.1.6 Visualising basis vectors and basis 1-forms:

One should keep in mind that while we talk about the (x, y) ‘frame’ and the (ξ, η) frame, there is only one
space – a flat sheet of paper perhaps. On that sheet we can overlay a Cartesian grid of lines of constant
x and y on a transparency and we can also overlay a warped grid of lines of constant ξ and η. We can
think of ξ and η as functions of x and y and vice versa. On the sheet of paper we can draw physical
dots (events in SR) and physical vectors like ~V as little arrows. These are real geometrical objects. The
basis vectors ~eξ and ~eη are two fields of such vectors; ~eξ(x, y) and ~eη(x, y). The (x, y)-frame components of
~eξ(x, y) are ∂(x, y)/∂ξ, and those of ~eη(x, y) are ∂(x, y)/∂η. The values of these vectors are determined by,
and describe in a differential manner, the mapping of the coordinates (x, y)↔ (ξ, η), and they are labelled
by the names of the coordinates ξ, η. But they do not ‘live’ in (ξ, η) space; they are real vectors that live
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x

y

ξ = 0 ξ = 2 ξ = 4η = 0

η = 2

η = 4
Vξ ⃗e ξ

⃗e η

⃗e ξ

Vη ⃗e η⃗e x

⃗e y

component

basis

vector

⃗V = Vξ ⃗e ξ + Vη ⃗e η

ω̃ξ = d̃ξ
basis 1-forms

ω̃y = d̃y

ω̃x = d̃x

ω̃η = d̃η

⃗e ξ

⃗e η

p̃ = pξ ω̃ξ + pη ω̃η

pξ = p̃( ⃗e ξ) pη = p̃( ⃗e η)
ω̃ξ = ∂ξ

∂x d̃x + ∂ξ
∂y d̃y = d̃ξ

ω̃η = ∂η
∂x d̃x + ∂η

∂y d̃y = d̃η

ω̃ξ ⟶
x,y ( ∂ξ

∂x , ∂ξ
∂y )

ω̃η ⟶
x,y ( ∂η

∂x , ∂η
∂y )

Figure 3: Basis 1-forms in curvilinear coordinates. Surfaces of constant curvilinear coordinates and basis
vectors are as in figure 2. Also shown are basis 1-forms as stacks of iso-coordinate surfaces. At the upper
right is shown a 1-form p̃ = d̃φ and how it is decomposed, much like a vector, as a sum of bases times
components p̃ = pξω̃

ξ + pηω̃
η. The components of a 1-form are pα′ = p̃(~eα′). I.e. the number of iso-φ

contours pierced by the basis vector ~eα′ . Basis 1-forms are given by the operator d̃ acting on the appropriate
coordinate. The physical components of the curvilinear basis 1-forms are (ω̃α

′
)β = ∂xα

′
/∂xβ.

on the sheet of paper. On the sheet we can also draw a 1-form p̃ as a little stack of equally spaced parallel
lines whose magnitude we understand to be the inverse spacing of the lines. The basis 1-forms are two
1-form fields ω̃ξ(x, y) and ω̃η(x, y). The (x, y)-frame components of ω̃ξ are (∂ξ/∂x, ∂ξ/∂y) and those of ω̃η

are (∂η/∂x, ∂η/∂y).
This is illustrated in figure 3 where the basis vector ~eξ points along the contour of constant η and reaches

from one contour of ξ to the next one. Similarly for ~eη. And the basis 1-form ω̃ξ is visualisable as a stack
of (perhaps more finely spaced) contours of ξ and similarly for ω̃η.

Both the basis vectors and the basis 1-forms describe, in a differential manner, the mapping between the
two coordinate systems:

{~eα} −→
x,y

∂(x, y)/∂(ξ, η) and {ω̃α} −→
x,y

∂(ξ, η)/∂(x, y) (70)

Their physical components are both partial derivatives of one set of coordinates with respect to the other
and they therefore encode identical information.

But they are useful for different things. If we have a separation ∆r,∆θ between two points in polar
coordinates, for example, and form the vector ∆r~er + ∆θ~eθ then the (x, y) components of this are useful
for computing things like the squared modulus of the separation ∆l2 = ∆x2 + ∆y2. The basis 1-forms are
more useful if we are dealing with e.g. a tabulated scalar function whose differences on a grid of r, θ have
been computed. If we have the physical components of the basis 1-forms tabulated also then the (x, y)
components of d̃φ = φ,rd̃r + φ,θd̃θ are the physical components of the gradient.

3.1.7 Orthogonality of the basis vectors and basis 1-forms

The basis vectors ~eα′ associated with a curvilinear frame are, in general, neither normal nor orthogonal to
one another. But the basis vectors and the basis 1-forms are orthogonal to each other in the sense that

ω̃α
′
(~eβ′) = δα

′
β′ (71)

I.e. the same as ω̃α(~eβ) = δαβ in the Cartesian frame.
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This is not simply saying that, for any α and β, ω̃α(~eβ) is a scalar and so is frame invariant, because
ω̃α

′
(~eβ′) = δα

′
β′ is expressing a relation between members of different sets of basis vectors and basis 1-forms.

But it is valid nonetheless, since

ω̃α
′
(~eβ′) = Λα

′
αω̃

α(Λββ′~eβ) = Λα
′
αΛββ′ω̃α(~eβ) = Λα

′
αΛββ′δαβ = Λα

′
µΛµβ′ = δα

′
β′ (72)

and is obvious in terms from figure 3.

3.2 The metric in curvilinear coordinates

3.2.1 The metric as a way to measure magnitudes of vectors

Just as in rectilinear coordinates, the metric g( , ) takes 2 vector arguments. Given the same vector twice,
it gives the squared length:

∆l2 = g( ~∆x, ~∆x) = ~∆x · ~∆x (73)

and its components, in the frame with basis vectors {~eα}, are defined to be gαβ = g(~eα, ~eβ) = ~eα · ~eβ.
In (x, y) coordinates ~ex · ~ex = ~ey · ~ey = 1 and ~ex · ~ey = 0, so

gαβ = diag(1, 1) = δαβ. (74)

We may also write g in terms of the outer product bases: gαβω̃
α ⊗ ω̃β = gαβ d̃x

α ⊗ d̃xβ, so

g = d̃x⊗ d̃x+ d̃y ⊗ d̃y. (75)

Similarly, in (r, θ) coordinates gα′β′ = ~eα′ · ~eβ′ , which, with ~er = cos θ~ex + sin θ~ey and ~eθ = r(− sin θ~ex +
cos θ~ey) (see figure 4 and appendix A), gives gα′β′ = diag(1, r2). So we can express g as a sum of outer
products of pairs of (r, θ)-frame basis 1-forms as g = gα′β′ω̃α

′
ω̃β

′
or

g = d̃r ⊗ d̃r + r2d̃θ ⊗ d̃θ. (76)

The length dl2 of an infinitesimal vector dr~er + dθ~eθ is

dl2 = dr2 + r2dθ2 (77)

which is often called the ‘line element’ , and from which we can read off the components of the metric.
The expressions (76) and (77) for g and for dl2 above look similar but are somewhat different things.

The expression for g defines an operator or function to which we feed vectors to get their lengths and scalar
products. And d̃r and d̃θ are not in any meaningful sense small. Whereas dr and dθ are infinitesimals.

Though if we feed g two copies of dr~er + dθ~eθ, then we get dl2 = . . .. And we could also feed g two
different vectors – in SR, for example, the four-momentum of a photon ~p and the 4-velocity of an observer
~U – in which case g(~p, ~U) = p̃(~U) gives (minus) the energy of the photon that the observer would measure.

But both (76) and (77) are equally good for reading off the components of the metric and indicating at
the same time the coordinates being used.

The (x, y)-frame expression (75), while equivalent to (76), reveals something obvious but which will be
crucial later: The metric is a sum of outer product bases – which are composed from position independent
1-form bases ω̃α = d̃xα – with coefficients that are also constant. Thus the metric g( , ) is independent
of position. This is obvious as we are just dealing with a sheet of paper which is flat. But it might not be
obvious – while true – if we were given (76).

3.2.2 The metric as a mapping between vectors and 1-forms

The other thing we have used the metric for is mapping vectors to 1-forms and vice versa. We noted that
g(~V , ) is a 1-form and g−1(p̃, ) is a vector since filling the empty slots with a vector and 1-form, respectively,
give scalars.

We can write Ṽ = g(~V , ) and ~V = g−1(Ṽ , ), so g and g−1 are respectively the index lowering and
raising operators.

In component form Vα′ = gα′β′V β′
, which implies V α′

= (gα′β′)−1Vβ′ , so the components of the ‘index
raising’ operator g−1 is the matrix inverse of gα′β′ .
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For example, in polar coordinates, the inverse exists and is:

gα
′β′

= (gα′,β′)−1 = diag(1, 1/r2). (78)

Note however that here, unlike in flat Euclidean space (or flat Minkowski space), the raising and lowering
matrices are not the same

We noted that it was natural to think of the 4-momentum of a particle as a 1-form p̃, because of the close
relationship between the conceptual picture of the 4-momentum 1-form and the wave-crests of the matter-
(or radiation-) wave packet that represents such an object. But you are free to use the corresponding, and
equivalent, vector ~p, though it is important to keep track of the minus sign in p0 = −p0 (in a rectilinear
frame)

3.2.3 The metric in terms of transformation matrices

The components of the metric are gα′β′ = g(~eα′ , ~eβ′) = ~eα′ · ~eβ′ so

gα′β′ = Λαα′Λββ′~eα · ~eβ = δαβΛαα′Λββ′ = δαβ
∂xα

∂xα′
∂xβ

∂xβ′ . (79)

3.3 The covariant derivative

We will now construct the covariant derivative operator, which differs from that in rectilinear coordinates
as the basis vectors and basis 1-forms are position dependent.

First we will introduce the connection or Christoffel symbols that give the components of the derivative
of the basis vectors.

We then consider the derivative of a vector and later that of tensors.

3.3.1 The derivative of the basis vectors: the connection Γµαν

In the (x, y) frame – which will be the primed frame here – the basis vectors are position independent, so
∂~eα′/∂xβ

′
= 0. While in the curvilinear frame ∂~eα/∂x

β 6= 0.
As an example, consider polar coordinates, in which (see figure 4 and appendix A)

~er = cos θ~ex + sin θ~ey
~eθ = r(− sin θ~ex + cos θ~ey)

(80)

As the basis vectors ~ex and ~ex are constant, the derivatives of ~er are

∂~er/∂r = 0
∂~er/∂θ = − sin θ~ex + cos θ~ey = ~eθ/r

(81)

and the derivatives of ~eθ are readily found to be

∂~eθ/∂r = ~eθ/r

∂~eθ/∂θ = −r~er.
(82)

The derivative of the basis vector ∂~eα/∂x
β is not , in fact, a tensor. It vanishes in the (x, y)-frame. But

if the components of a tensor vanish in one frame they vanish in all frames, which is not the case.
Nonetheless, we can write the derivative of ~eα along the βth coordinate direction, as a linear combination

of the basis vectors:
∂~eα/∂x

β = Γµαβ~eµ (83)

where the coefficients Γµαβ are called the Christoffel symbols and are the components of ∂~eα/∂x
β.

They are also called the connection coefficients or just the connection, and are sometimes also denoted

by
{

µ
αβ

}
.

The connection is related to the coordinate transformation matrix as follows: The curvilinear bases are

~eα = (∂xα
′
/∂xα)~eα′ (84)
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x

y

θ

r

⃗e r = cos θ ⃗e x + sin θ ⃗e y

⃗e θ = r(−sin θ ⃗e x + cos θ ⃗e y)
ω̃r = cos θ ω̃x + sin θ ω̃y

ω̃θ = r−1(−sin θ ω̃x + cos θ ω̃y)

∂ ⃗e r /∂r = 0
∂ ⃗e r /∂θ = ⃗e θ /r

∂ ⃗e θ /∂r = ⃗e θ /r
∂ ⃗e θ /∂θ = − r ⃗e r

∂ ⃗e α /∂xβ = Γμ
αβ ⃗e μ ⇒ Γr

θθ = − r
Γθ

θr = Γθ
rθ = 1/r

connection

basis vectors

basis 1-forms

⃗e x

⃗e y

ω̃y = d̃y

ω̃x = d̃x

Figure 4: Basis vectors in polar coordinates are indicated by the arrows. The (x, y)-frame basis vectors ~ex
and ~ey are just unit vectors pointing along the x and y coordinate axes. The basis 1-forms ω̃r and ω̃θ are
also indicated as stacks of iso-r and iso-θ surfaces. All of the basis vectors and basis 1-forms rotate if we
change θ. The magitudes of ~er and ω̃r are constant while those of ~eθ and ω̃θ vary linearly and inversely with
r. The partial derivatives of the basis vectors are shown, along with the formula defining the connection
Γµαβ, and at bottom right, the non-vanishing components of the connection are shown.

so ∂~eα/∂x
β = (∂2xα

′
/∂xβ∂xα)~eα′ as the ~eα′ are constant. So

∂~eα/∂x
β = (∂2xα

′
/∂xβ∂xα)∂xµ/∂xα

′
~eµ (85)

Comparing with the definition of the Christoffel symbols above we have

Γµαβ =
∂xµ

∂xα′
∂2xα

′

∂xβ∂xα
(86)

which is useful as it shows that Γµαβ is symmetric under exchange of its lower indices α⇔ β.
This shows that Γµαβ is the derivative with respect to xβ of the matrix ∂xα

′
/∂xα multiplied by its

inverse, so Γµαβ = ∂β log
(
∂xα

′
/∂xα

)
.

Finally, we can also write the connection in terms of the Λ-matrices as

Γµαβ = Λµα′Λα
′
α,β. (87)

3.3.2 The covariant derivative of a vector

Consider a vector field ~V (~x) = V α(~x)~eα(~x) where, as before, the un-primed frame is the curvilinear frame,
and take the difference between its values at two neighbouring points:

∆~V = V α(~x+ ∆~x)~eα(~x+ ∆~x)− V α(~x)~eα(~x). (88)

Taking the limit of ∆~V /∆xβ for a separation along the βth coordinate axis we have

∂~V

∂xβ
=
∂V α

∂xβ
~eα + V α ∂~eα

∂xβ
(89)

or, invoking the definition of Γµαβ,

∂~V

∂xβ
=
∂V α

∂xβ
~eα + V αΓµαβ~eµ (90)
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or, exchanging the dummy indices α⇔ µ in the last term,

∂~V

∂xβ
=

(
∂V α

∂xβ
+ V µΓαµβ

)
~eα. (91)

Switching notation ∂X/∂xα ⇒ X,α, this says ~V,β, i.e. the rate at which the entire vector – bases and
components – changes wrt xβ, has components V α

,β + V µΓαµβ.
We call this the covariant derivative, and we denote its components by

V α
;β ≡ V α

,β + V µΓαµβ (92)

or, denoting the entity whose components are V α
;β by ∇~V , we have

∇~V = V α
;β~eα ⊗ ω̃β. (93)

Now ∇~V → V α
;β, despite involving the non-tensorial connection, is a tensor (see appendix B). That

means that V α
,β is not a tensor.

A variety of notation is used for covariant derivatives of vectors. We have (∇~V )αβ = V α
;β, which is

also denoted by (∇β ~V )α. And we denote (∇~V )(~U) – the path derivative of ~V along the path with tangent

vector ~U – by ∇~U
~V , which is the vector with components V α

;βU
β.

Here is a question to test your understanding of the covariant derivative: Given a vector field ~V (~x),
in rectilinear coordinates we can obtain, to first order in the displacement, the components of the vector
at a displaced location ~x + ~∆x as V α(~x) + V α

,β∆xβ. What about the analogous quantity in curvilinear

coordinates: V α(~x) + V α
;β∆xβ? Does this provide the components of ~V (~x+ ∆~x)? If not, why not? What

does it give us.

3.3.3 Parallel transport of a tangent vector along a curve

One use of the covariant derivative is to provide the variation of the components of the tangent vector
~U = d~x/dλ to a parameterised curve ~x(λ) in the case that the tangent vector is unchanging:

∇~U
~U = 0. (94)

An important application of this is a free-particle, whose 4-momentum ~p = m~U is unchanging as it moves.
We say that such a particle ‘parallel transports’ its 4-momentum.

It is worth mentioning, at this point, that we done something potentially questionable in that we have
here the operator that gives the derivative of a vector field and we have applied it to a tangent vector that
is defined only along a line. If this worries you, you might want to think about the field ~U(~x) that gives the
4-velocity of a collection of particle à la Hamilton and Jacobi.

Since ∇~U
~U → UβUα;β we have, from (92), for dUα/dλ = UβUα,β

dUα/dλ = −ΓαµβU
µUβ (95)

or equivalently

d2xα/dλ2 = −Γαµβ(dxµ/dλ)(dxβ/dλ) (96)

which is called the geodesic equation. It is the equation obeyed by the curvilinear coordinates ~x(λ) of a
straight line.

Given the initial location and tangent vector (or 4-velocity) and knowledge of the connection we can
integrate this to give the path and tangent or 4-momentum vector along the path. The parameter λ, in the
case of a particle, being proper time.

As an example, consider 2D polar coordinates, for which the non-vanishing connection coefficients are

Γrθθ = −r
Γθθr = Γθrθ = 1/r

(97)
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(see figure 4). The geodesic equations are

r̈ = −Γrθθθ̇
2 = rθ̇2

θ̈ = −Γθθrθ̇ṙ − Γθrθṙθ̇ = −2θ̇ṙ/r
(98)

The latter implies that d(r2θ̇)/dλ = r2θ̈ + 2rṙθ̇ = 0. That is sensible as r2θ̇ is the angular momentum of a
particle. This is also the θ component of the 1-form Ũ = g(~U, ), and its conservation, as we will see later,
follows from the invariance of the metric components with respect to θ. This is another reason why it is nice
to think about the momentum as a 1-form as the physical content of conservation laws are often explicit,
while somewhat masked in terms of the vector components.

3.3.4 Covariant derivatives of scalars, 1-forms and other tensors

– Covariant derivative of a scalar

A scalar φ does not depend on any basis vectors, so its covariant derivative is just the usual partial
derivative, ∇βφ = φ,β, hence

φ;β = φ,β (99)

– Covariant derivative of a 1-form

One can use the same line of argument as used in the previous section to compute the covariant derivative
of a 1-form (denoted in component form by pα;β).

Alternatively, one can use the fact that the scalar product φ = p̃(~q) = pαq
α is also, of course, a scalar,

and being the sum over α of products we have

φ,β = pαq
α
,β + pα,βq

α (100)

On the other hand, from its definition as a limit of a difference, the covariant derivative must obey the
analogous rule:

φ;β = pαq
α

;β + pα;βq
α (101)

but φ;β = φ,β and qα;β = qα,β + qµΓαµβ so pα;βq
α = pα,βq

α − pαqµΓαµβ. Swapping the dummy indices
α↔ µ in the last term gives pα;βq

α = (pα,β − pµΓµαβ)qα which, qα being arbitrary, gives us the components
of the covariant derivative ∇p̃:

pα;β ≡ pα,β − pµΓµαβ (102)

and, just as with ∇~V , we can also denote these components as (∇β p̃)α or (∇p̃)αβ.
One must pay attention to the placing of the indices and parentheses since, for example, ∇βpα is not

the same as (∇β p̃)α. Do you see why?

– Covariant derivative of a tensor

The argument above can be readily generalised to tensors of arbitrary rank and we find, for instance,

∇βBµ
ν = Bµ

ν;β = Bµ
ν,β +Bα

νΓµαβ −Bµ
αΓανβ . (103)

So for each index there is a term involving a Christoffel symbol. For a covariant (downstairs) index we
contract with the upstairs index on Γµαβ and for a contravariant index we contract with a downstairs index,
and the other indices go where they have to go given that we always place the index denoting the coordinate
with respect to which we are differentiation (β here) last

This is a convenient place to remind ourselves that since the operator Uβ∇β is the same as d/dλ, which
can defined in the usual way as the limit as ∆λ→ 0 of the difference of the argument at two points on the
path, all the usual rules of differentiation apply to the ∇ operator – so, for example, ∇(AB) = A∇B+B∇A
whatever objects A and B might be and no matter how they may be contracted with one another
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3.3.5 Computing the Christoffel symbols from the metric

The covariant derivate is the basis of Einstein’s ‘generalised covariance’ . If we have a law of physics written
in relativistically covariant form, such as Maxwell’s equations, for example, then we can obtain the form
of the equation in an arbitrary coordinate system simply by replacing commas by semicolons. Another
example already discussed is the law of motion for a free particle: it maintains constant 4-momentum so the
4-velocity obeys the geodesic equation (96).

But to apply this we need the connection. In the foregoing, we obtained this in terms of the matrix Λαα′

that affects the transformation from the rectilinear to curvilinear coordinates: Γµαβ = Λµα′Λα
′
α,β.

But recall that the components of the metric are gαβ = Λα
′
αΛβ

′
βηα′β′ , which, if we were to differentiate

it, would give us something very similar. This suggests that we may be able to find an explicit expression for
the connection directly in terms of the metric in the curvilinear frame. If so, we would not need to bother
about the rectilinear coordinate system at all. That would be very nice. The metric is something that, in
principle, is directly measurable from distances between events with known curvilinear coordinates. And we
also obtain it, as we shall see, as the solution of Einstein’s equations.

The desired relation comes, with a little algebra, from the fact that, as we saw, the metric, which we can
express as g = ηα′β′ d̃xα

′ ⊗ d̃xβ′
is independent of position. That might appear to be involve the rectilinear

(primed) coordinates, but it implies that

∇g = 0 (104)

which is a tensor equation and is therefore true in an arbitrary frame.
Applying the rule for covariantly differentiating a tensor this says

gαβ,µ − Γναµgνβ − Γνβµgαν = 0. (105)

To solve this equation for the connection, we write down the possible permutations of this (there being 3 as
gαβ is symmetric)

gαβ,µ = Γναµgνβ + Γνβµgαν
gαµ,β = Γναβgνµ + Γνµβgαν
−gβµ,α = −Γνβαgνµ − Γνµαgβν

(106)

where we have changed the sign in the last. Adding these, and using the symmetry of the metric and of the
Christoffel symbols, we find that 4 of the 6 terms cancel, while the other two are equal, and this gives

gαβ,µ + gαµ,β − gβµ,α = 2gανΓνβµ (107)

and dividing by 2 and multiplying by gαγ gives the final result

Γγβµ = 1
2g
αγ(gαβ,µ + gαµ,β − gβµ,α). (108)

To illustrate the utility of this, recall that Einstein’s rocket and tower thought experiments suggest that
clocks down in a potential well run slow compared to reference clocks at infinity dτ = 1 + φ(x)/c2)dt. So
the metric, in coordinates tied to steadily accelerated observers, is

gαβ ' diag(−(1 + 2φ(x)/c2), 1, 1, 1) (109)

where φ(x) is the gravitational potential. The only coordinate dependent metric component is g00 (the
time-time component) and that only depends on spatial position x.

The geodesic equation is d2xα/dτ2 = −Γαµν(dxµ/dτ)(dxν/dτ). We can use this to compute the ith

component of the acceleration of a particle by setting α = i. But if φ � c2 – an excellent approximation
for the Earth, for instance – and work to 1st order accuracy in φ/c2 we can take gαδ = ηαδ above and
the only non-vanishing Christoffel symbols appearing are Γi00 = φ,i/c

2. For a non-relativistic particle
~d~x/dτ −→ (c,o) and we obtain

d2x/dτ2 = −∇φ (110)

which agrees with the Newtonian result.
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3.3.6 Parallel transport of the momentum 1-form

Just as we obtained the geodesic equation telling us how the curvilinear components of the tangent vector
(or equivalently momentum 4-vector) evolve for a freely moving particle (one for which ∇~U~p = 0) one can
obtain the equation for the evolution of the components of the momentum 1-form for such a particle. In a
rectilinear frame the components of the momentum 1-form are constant, so Uβpα,β = 0. But the connection
vanishes in the rectilinear frame so that is equivalent to the 1-form equation ∇~U p̃ = 0. From this, and (102)
we obtain

dpα/dλ = Uβpα,β = UβΓγαβpγ . (111)

Using (108) and p̃ = mŨ this says

dpα/dλ = 1
2mU

βUγg
γν(gνα,β + gνβ,α − gβα,ν) = 1

2mU
βUν(gνα,β + gνβ,α − gβα,ν). (112)

But the 1st and last terms in the parentheses combined are anti-symmetric under β ⇔ ν and so vanish when
contracted with the symmetric UβUν and we are left with

dpα/dλ = 1
2mU

βUνgνβ,α (113)

from which we see that if the components of the metric are independent of one of the coordinates then the
corresponding component of the momentum 1-form is a constant of the motion. This proves to be very
useful.

3.4 Concluding comments

In this lecture we have developed the mathematical machinery of flat-space (or flat-space time) tensor
calculus in arbitrary coordinate systems.

To recapitulate, we started with coordinate transformation xα ⇔ xα
′
. We then obtained the basis vectors

and 1-forms as partial derivatives of xα with respect to xα
′

and vice versa. This allowed us to construct
vectors and tensors (including 1-forms) and fields of such entities. We then constructed the ‘covariant
derivative’ that gives the derivatives of vectors and tensors, properly taking into account the way the basis
vectors vary with position. At the heart of the covariant derivative operator is the ‘connection’ Γµαβ which,
we showed, can be computed explicitly from the metric in the curvilinear coordinate system.

This allows us to ‘do’ special relativity in arbitrary curvilinear coordinates and to translate the laws of
physics from their form in the more restricted rectilinear Minkowski coordinates to obtain their ‘generally
covariant’ form.

But the results we have obtained are of much greater generality. In Einstein’s general relativity, space-
time is not flat; the Universe is a curved 4-dimensional ‘manifold’. But it is locally flat, in the Minkowskian
sense, with a light-cone structure built into it and everything we have done here still applies. So if we
have somehow obtained, perhaps by direct measurement, or have hypothesised, the metric for this manifold
(expressed in some coordinate system) we can use (108) to get the connection and then, for example, solve
(96) for trajectories of particles (e.g. planets in the solar system). Or we can solve things like Maxwell’s
equation or the Klein-Gordon equation to obtain the behaviour of EM radiation or scalar fields in this curved
space-time.

A An example: Polar coordinates

A simple concrete example that illustrates many of the concepts developed here is the mapping on the plane
from Cartesian to polar coordinates, as illustrated in figure 4.

The mappings between Cartesian xα = (x, y) and polar xα
′

= (r, θ) coordinates are

(x(r, θ), y(r, θ)) = r(cos θ, sin θ)

(r(x, y), θ(x, y)) = (
√
x2 + y2, tan−1(y/x))

(114)

Λαα′ =
∂xα

∂xα′ =
∂(x, y)

∂(r, θ)
=

[
∂x/∂r ∂x/∂θ
∂y/∂r ∂y/∂θ

]
=

[
cos θ −r sin θ
sin θ r cos θ

]
=

[
x/r −y
y/r x

]
Λα

′
α =

∂xα
′

∂xα
=
∂(r, θ)

∂(x, y)
=

[
∂r/∂x ∂r/∂y
∂θ/∂x ∂θ/∂y

]
=

[
x/r y/r
−y/r2 x/r2

]
=

[
cos θ sin θ

−(sin θ)/r (cos θ)/r

] (115)
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~eα′ = Λαα′~eα → [~er ~eθ] =
[~ex ~ey]

[
cos θ −r sin θ
sin θ r cos θ

]
(116)

or

~er = cos θ~ex + sin θ~ey

~eθ = r(− sin θ~ex + cos θ~ey)
(117)

and that the basis 1-forms are

ω̃α
′

= Λα
′
αω̃

α = Λα
′
αd̃x

α →
[
ω̃r

ω̃θ

]
=

[
cos θ sin θ

−(sin θ)/r (cos θ)/r

] [
d̃x

d̃y

]
(118)

or

ω̃r = cos θd̃x+ sin θd̃y

ω̃θ = (− sin θd̃x+ cos θd̃y)/r
(119)

In trying to visualise the meaning of these equations, it may be useful to keep in mind that (cos θ, sin θ)
is a unit vector in the r-direction while (− sin θ, cos θ) is – a unit vector in the θ-direction – is the same
vector rotated anti-clockwise by 90 degrees.

B Transformation of the covariant derivative of a vector ∇~V

The covariant derivative of a vector field is

∇~V → V α
;β = V α

,β + ΓαµβV
µ (120)

We would like to show that this transforms as a tensor:

V α′
;β′ = Λα

′
αΛββ′V α

;β. (121)

We start with the fact that the connection vanishes in the rectilinear (here primed) frame:

V α′
;β′ = V α′

,β′ = ∂β′V α′
. (122)

Using V α′
= Λα

′
αV

α and ∂β′ = Λββ′∂β, we have

V α′
;β′ = Λββ′∂β(Λα

′
αV

α) = Λββ′Λα
′
αV

α
,β + Λββ′Λα

′
α,βV

α (123)

but the connection, in terms of the transformation matrices is Γµαβ = Λµα′Λα
′
α,β, so Λα

′
α,β = (Λµα′)−1Γµαβ =

Λα
′
µΓµαβ so the second term above is Λββ′Λα

′
α,βV

α = Λββ′Λα
′
µΓµαβV

α = Λββ′Λα
′
αΓαµβV

µ where we have
switched the dummy indices α⇔ µ, so

V α′
;β′ = Λα

′
αΛββ′(V α

,β + ΓαµβV
µ) = Λα

′
αΛββ′V α

;β (124)

which is indeed the transformation law for a
(

1
1

)
tensor.

C Covariant derivative vs. gauge covariant derivative

Recall that, in electromagnetism, we can introduce the coupling of a charged particle to the EM field simply
by changing the partial derivatives in the Schrödinger equation (or the KG equation for a complex classical
scalar field) to gauge covariant derivatives:

∂µψ ⇒ Dµψ =

(
∂µ −

iq

~
Aµ

)
ψ. (125)

This bears a close resemblance to the covariant derivative of a vector:

V ν
;µ = V ν

,µ + ΓνγµV
γ . (126)
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The similarity can be enhanced if we write the complex wave-function or field as a 2-component ‘vector’
living is the Argand plane.

People often say that the coupling of charged matter to the EM gauge field ~A exists in order that the
Schrödinger (or KG) equation be invariant under an arbitrary local phase shift ψ ⇒ ψ′ = eiθ(~x)ψ. Whereas
the appearance of the connection in the covariant derivative is there in order to make keep the covariant
derivative of a vector field invariant under an arbitrary choice of coordinates.

This is rather pleasing, but the analogy is actually rather weak. It is true that, for particles, there is a
great similarity between the geodesic equation for a massive particle – where, as we saw, in the weak field limit
the spatial components are ẍ = −∇φN (with φN the Newtonian gravitational potential) – and the equation of
motion for a charge particle u̇α = qA[µ,ν]u

ν , which gives, in the non-relativistic limit ẍ = −q∇ϕ = −cq∇A0.
So the result of a gravitational potential φ(x) on a mass is similar to that of an EM potential on a charge.
But the relevant Christoffel symbol that appears in the covariant derivative in the weak field limit is, as we
saw, Γi00 = ∂iφ/c

2, which is the gradient of the gravitational potential whereas it is the potential ~A itself
that appears in the gauge covariant derivative, and not its derivative. So the respective potentials enter the
two types of derivative above in different ways.

This difference is apparent if we couple the Schrödinger equation to gravity with the comma⇒ semicolon
rule. Without gravity (or acceleration) the Schrödinger/KG equation is

ψ,µ,µ = k2
Cψ. (127)

where kC = mc/~ is the Compton wave number.
Now ψ is a scalar, so ψ;µ = ψ,µ so ψ;µ

;µ = ψ,µ;µ = ψ,µ,µ + Γµβµψ
,β and the equation of motion is:

ψ,µ,µ + Γµβµψ
,β = k2

Cψ. (128)

If we consider the gravitational influence as a small perturbation to a zeroth order (in φN) solution ψ '
ψ0 cos(ckCt) the gravitational influence involves Γµ0µ as we can neglect spatial gradients. But from the
formula (108) for the Christoffel symbols this is

Γµ0µ = 1
2g
µγ(gγ0,µ + gγµ,0 − g0µ,γ) ' 1

2∂0φN/c
2 (129)

so, perhaps surprisingly, the spatial derivative of the gravitational potential does not actually appear. For
e.g. gravitational fields we encounter in Nature the potential changes on the dynamical timescale (the orbital
timescale) and time derivatives of the potential are smaller than spatial derivatives by on the order of the
velocity and so the gravitational coupling via the connecting here is negligibly small.

The way that gravity actually couples to such a field is not via the connection at all. It comes about
because ψ,µ,µ = gµαψ,αµ ' −(1+2φN/c

2)1
c

2
ψ̈+∇2ψ. For non-relativistic fields ψ̈ ' −c2k2

Cψ so the equation
of motion becomes

ψ̈ − c2∇2ψ = ω2
C(x)ψ (130)

where the Compton frequency is ωC(x) = m(x)c2/~ with m(x) ' m(1 + φN(x)/c
2). So the this behaves like

a massive field where the mass is position dependent. This is preciely the same equation as obeyed by EM
waves in a plasma, if we replace ωC(x) by the plasma frequency. This allows one to understand how matter
waves (as dark matter) could be trapped in potential wells of galaxies etc. much as EM waves get trapped
by the ionosphere.
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