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1 Introduction

Einstein’s field equations provide a natural relativistic generalisation of Poisson’s equation with the mass
density ρ replaced by the stress-energy tensor T as the ‘source’.

The analogue of the Newtonian gravitational potential is the metric, and, if we work in a local inertial
frame (LIF), the 2nd derivatives of the metric are the Riemann curvature which, like the 2nd derivatives
of the Newtonian potential – i.e. the Newtonian tidal field – are observable through their influence on the
trajectories of neighbouring particles or photons. This – as we shall see in more detail below – ties down
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the constant κ in the theory. The field equations are the simplest such generalisation, though there is the
possibility to add the cosmological constant term, with the additional constant Λ.

Solving the field equations, however, is much more difficult than for Newton’s gravity. In Newtonian
gravity the space-time geometry is given a priori , and Poisson’s equation and the relations between the
potential, gravity and tidal field are all linear. That mean we can write down the potential – and hence
obtain the gravity and the tide – for a given mass distribution simply by summing the δφ = −Gδm/r
potentials of all the mass elements.

In Einstein’s theory, the equations are non-linear, and the space-time geometry emerges as part of the
solution, so it is a great challenge to find a space-time and stress-energy tensor that are compatible with
each other. And we further require that that stress-energy tensor be compatible with e.g. the equations
of motion1 of the fields comprising it. And even when we have a solution, the fact that we had complete
freedom in choice of the coordinate system in terms of which it is expressed may make it difficult to interpret
physically.

Here we will consider the situation where the curvature of space-time is very weak, so we look for solutions
where the metric is very close to that of a flat Minkowski ‘background’, with small perturbations:

gαβ = ηαβ + hαβ. (1)

We can then proceed much as in Newtonian gravity where we can search for a solution giving the metric
perturbations caused by a given matter source term. Though there are still subtleties to do with the choice
of coordinate systems.

In this lecture we will develop this perturbation theory approach, and we will apply it in the Newtonian
limit. This is an important application because most things that we can observe – with the exception of
the immediate vicinity of black-holes and relativistic stars on one hand and the properties of the universe
on the largest scale on the other – are well described by this theory.

The other important application of the weak-field theory developed in the first half of this lecture is to
gravitational waves, which will be considered in the next lecture.

2 Geometrized units

It can be convenient in SR to choose units of length and time so that the numerical value of the speed of
light is unity. That doesn’t mean that c = 1 as c has units of length / time or [L/T]. But if we think of
formulae as only representing numbers, rather than physical entities, we can then be sloppy and simply omit
c from formulae, leaving it up to the reader to figure out that, in a formula like ds2 = −dt2 +dx2 +dy2 +dz2,
for example, dt2 is really shorthand for c2dt2.

Similarly, it can be convenient in GR to choose units of mass such that Newton’s constant GN = c2.
These are called geometrized units.

Given that the orbital velocity v for a test particle around a mass is v2 = GNM/r, we have v2/c2 =
(GN/c

2)×M/r, which numerically, is v2 = M/r, so we can express masses as equivalent lengths; the length
corresponding to a mass M is the radius of the orbit for which the orbital speed would be c. I.e. the
Schwarzschild radius for a BH of that mass.

So we can quote the value of mass in (equivalent) metres. For example, 1 solar mass (M� ' 2× 1030kg)
is approximately equivalent to 1.5 km.

Einstein’s field equations are G = 8πκT and contain a single dimensionful constant κ. In the convention
we are using, G has units of inverse length squared [L−2] while T has units of energy density [ML−1T−2], so
κ has units [M−1L−1T2]. Newton’s constant, on the other hand, from v2 = GNM/r, has units [M−1L3/T2],
different from that of GN by [L4/T4]. Expressed in terms of GN, and requiring correspondence between
Einstein and Newton for low velocity particles (which is where the 8π comes from) the field equations are
G = 8π(GN/c

4)T.
So in geometrized units the field equations take the form

G = 8πT. (2)

1People often describe the equations of energy and momentum conservation Tµν ;µ = 0 as being the ‘equations of motion’,
but, in general, they are not sufficient to describe the matter and one needs to solve the equations of motion for the fields and/or
particles.
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This saves a bit of ink and typing. But it is not clear, in the present circumstances, that this is such
a great idea. Here we are doing perturbation theory, where we think of G as being a first order response
to a zeroth order matter source term T. So maybe it is helpful to keep the κ = GN/c

4 visible rather than
hidden, in order to remind ourselves that this is facilitated by the weakness of the gravitational interaction.
Mostly, we’ll keep it (as this is supposed to be an introductory course we want to minimise the burden on
the reader), but if it offends you just ignore it.

3 Weak field gravity

3.1 Nearly Minkowskian coordinate systems

We assume there exists a coordinate system ~x such that the proper separation between two events with
separation d~x→ dxα is, as usual, ds2 = gαβ(~x)dxαdxβ, with

gαβ(~x) = ηαβ + hαβ(~x) (3)

• where ηαβ = diag{−1, 1, 1, 1} is the usual flat space-time ‘Minkowski metric’

• and where hαβ are the components of the ‘metric perturbation’

• and where we assume that these are all small: |hαβ| � 1

There are a wide range of situations where this is a very good approximation. As we saw, the effect
of a gravitating body like the Earth can be described by a metric in which there is ‘warping of time’ with
g00 ' −(1 + 2φ/c2) where φ is the Newtonian potential which, for Earth, gives h00 ∼ 10−9. And, as we shall
see shortly, the spatial parts of the metric perturbation are of the same order of magnitude.

For galaxies and galaxy clusters the motions are larger, but still h00 . 10−5. So the weak-field approxi-
mation is very good indeed.

By working only to lowest order in these perturbations we will obtain a great simplification of the theory.
This breaks down, however, for black holes and highly relativistic stars like neutron stars on the one

hand, and on the largest scales we can observer in cosmology on the other.

3.2 Transformation of the weak-field metric

A metric, in general, contains information about both the geometry of space-time – described by g – and
the coordinate system we have adopted, which, together with the geometry, fixes the components gαβ(~x)
and hence hαβ(~x).

The same is true in weak-field gravity. This is both a blessing – because we can judiciously choose
coordinates to simplify the equations – and a curse.

Understanding and exploiting this requires, as a first step, figuring out how the components of the metric
perturbations hαβ(~x) change under transformations of the coordinate system

3.2.1 Global ‘background’ Lorentz transformations

Consider a transformation of coordinates exactly like a Lorentz transformation in flat space:

xα
′
(xα) = Λα

′
αx

α (4)

where, for a boost along the x1-axis with velocity v, for example,

Λα
′
α =


γ −γv/c

−γv/c γ
1

1

 . (5)

This has an inverse transformation xα = Λαα′x
α′ with Λαα′ given by the same formula with the sign of

v reversed.
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More generally, the velocity need not lie along the x-axis, and the transformation matrix might also
include rotation, so we have the usual family of Lorentz transformations, parameterised by the three com-
ponents of v and the three Euler angles.

Since ds2 = gαβ(~x)dxαdxβ = gαβ(~x) ∂x
α

∂xα′
∂xβ

∂xβ′
dxα

′
xβ
′
, and, since ∂xα/∂xα

′
= Λαα′ here, the metric

transforms, as usual, according to

gα′β′ = Λαα′Λ
β
β′gαβ = Λαα′Λ

β
β′(ηαβ + hαβ) (6)

but ηαβ is unchanged by this transformation so, writing gα′β′ = ηα′β′ + hα′β′ , we have

hα′β′ = Λαα′Λ
β
β′hαβ (7)

so the metric perturbation transforms, under this transformation, just like a tensor transforms in SR.
One might imagine using this if one wanted to know what is the gravitational field of a star as perceived

by a rapidly moving observer. One could then calculate the metric perturbation in the frame in which the
star is at rest, where one can exploit the symmetry and lack of time variation, and then apply boost matrices
as above to transform to the relatively moving frame.

3.2.2 Raising, lowering and contracting indices of the metric perturbation

The components of the inverse metric gαβ = (g−1)αβ are given, to zeroth order in the perturbation, by ηαβ.
So the mixed rank metric perturbation hαβ = gαµhµβ = ηαµhµβ + . . .. So we can use the Minkowski metric
to raise or lower indices of, and to perform contractions on, the metric perturbation hαβ. So we have for
the contraction h = hαα = ηαβhαβ and for the contravariant components hµν = ηµαηνβhαβ.

Note that the perturbation of the components gµν of g−1 are not hµν . Since gµνgνβ = δµβ , and writing

gµν = ηµν + pµν , it must be that δµβ = (ηµν + pµν)(ηνβ + hνβ) = δµβ + ηµνhνβ + pµνηνβ + pµνhνβ . Dropping
the last term as it is 2nd order, we see that the inverse metric perturbations pµν satisfy pµσησβ = −ηµαhαβ
or, multiplying by ηνβ , pµσησβη

νβ = pµσδνσ = pµν = −ηνβηµαhαβ or pµν = −hµν and thus, at linear order,
the inverse metric (i.e. the thing one uses to compute scalar products of 1-forms, for instance) is

gαβ = ηαβ − hαβ. (8)

3.2.3 Gauge transformations

Another – arguably more useful – type of transformation is that in which the coordinates xα
′
(P) of a point

or event P in the primed frame are the same as the coordinates xα(P) of the same point in the un-primed
frame plus a small – in a sense to be made precise presently – displacement vector field ξα(xβ)

We can write this as

xα
′
(xβ) = xα + ξα(xβ) (9)

where the meaning of this formally illegitimate equation (as the indices do not balance) is that for any choice
of the index α′, xα

′
is given by the right hand side with α = α′.

To avoid having to say all of that and if you want to keep the indices balanced you can instead write
this transformation more carefully – or perhaps pedantically – as

xα
′
(xβ) = rα

′
(xβ) where

rα(xβ) ≡ xα(xβ) + ξα(xβ).
(10)

Either way, the transformation matrix is Λα
′
β ≡ ∂xα

′
/∂xβ = ∂rα

′
/∂xβ, or

Λα
′
β = δα

′
β + ξα

′
,β. (11)

One can visualise the situation in 2D if we imagine the un-primed coordinates of events like P displayed
as Cartesian coordinates. The primed coordinates can then be read off from an overlaid transparency on
which the lines of constant primed coordinates are slightly distorted with respect to the Cartesian grid.
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The corresponding inverse transformation is (being careful and/or pedantic)

xα(xβ
′
) = pα(xβ

′
) where

pα
′
(xβ

′
) ≡ xα′ − ξα′(xβ′ − ξβ′)

= xα
′ − ξα′(xβ′) + ξβ

′
ξα
′
,β′ − ξβ

′
ξγ
′
ξα
′
,β′γ′ + . . .

(12)

where we have performed a Taylor expansion.
We can now make precise by what we mean by the gauge transformation being small. It is not in fact

necessary that ~ξ itself be small. Provided that the components of the ‘distortion tensor’ are small:

|ξα,β| � 1 (13)

which means that the primed coordinate grid is only slightly distorted , and provided that |ξγξα,βγ | � 1 and
so on, then we can ignore all the terms in the expansion involving derivatives, and we have for the inverse
transformation

xα(xβ
′
) = pα(xβ

′
) where

pα
′
(xβ

′
) ≡ xα′ − ξα′(xβ′)

(14)

or, taking slight liberties as above,

xα(xβ
′
) = xα

′ − ξα(xβ
′
). (15)

The inverse transformation matrix is Λαβ′ ≡ ∂xα/∂xβ
′

where

Λαβ′ = δαβ′ − ξα,β′ . (16)

3.2.4 Transformation of the metric under a gauge transformation

The transformation of the metric is gα′β′ = Λαα′Λ
β
β′gαβ, or

gα′β′ = (δαα′ − ξα,α′)(δββ′ − ξβ,β′)(ηαβ + hαβ) (17)

or, keeping only terms which are first order (in the metric perturbation or the gauge distortion tensor) and
writing

gα′β′ = ηα′β′ + hα′β′ (18)

we obtain the law for the transformation of hαβ under a gauge transformation:

hα′β′ = hαβ − ξα,β − ξβ,α (19)

where the meaning of this formally illegitimate equation is as above for (9) and where, for example, ξα,β =
ηαγξ

γ
,β.

We will use such transformations to find coordinate systems in which the metric takes a conveniently
simple form. In doing this, the components of the required distortion tensor are typically of the same order
of magnitude as those of the metric perturbation tensor.

3.3 The curvature in weak-field gravity

3.3.1 The linearised Riemann tensor

The general expression for the connection in terms of the metric is

Γγβµ = 1
2g
γα(gαβ,µ + gαµ,β − gβµ,α) (20)

so for weak fields, and to first order in |hαβ|,

Γγβµ = 1
2η

γα(hαβ,µ + hαµ,β − hβµ,α) (21)
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so the connection is a purely 1st order quantity. This means that we can ignore the products of Christoffel
symbols in the expression for the Riemann tensor and we have, at leading order,

Rαβµν = −Γαβµ,ν + Γαβν,µ (22)

or, lowering the index α (with the Minkowski metric, of course)

Rαβµν = [−1
2(����hαβ,µν + hαµ,βν − hβµ,αν)]− {µ⇔ ν} (23)

where the slash indicates that the first term will cancel when we subtract the corresponding term with µ
and ν flipped.

This gives

Rαβµν = −1
2(hαµ,βν − hαν,βµ + hβν,αµ − hβµ,αν) (24)

which you may remember as it’s what we got before for the Riemann tensor in locally inertial coordinates.
Here we are not (necessarily) working in a LIF, but the same formula is valid by virtue of the smallness of
the metric perturbations.

This is a bit ugly, and maybe a bit hard to remember. I find it easier to think of this as

Rαβµν = [(−1
2hαµ,βν)− {α⇔ β}]− {µ⇔ ν} (25)

so you just have to remember the 1/2, the minus sign – which is conventional – and the fact that Rαβµν is
antisymmetric under interchange of either α and β or µ and ν.

3.3.2 Transformation of the linearised Riemann tensor

Applying the law (19) for transforming the metric hα′β′ = hαβ − ξα,β − ξβ,α to (25) above, the curvature
changes under a gauge transformation to

Rα′β′µ′ν′ = Rαβµν + ([1
2(ξα,µβν + ξµ,αβν)− {α⇔ β}]− {µ⇔ ν}). (26)

But ξα,µβν is symmetric under µ⇔ ν and ξµ,αβν is symmetric under α⇔ β, so both terms vanish when we
anti-symmetrise, and we have

Rα′β′µ′ν′ = Rαβµν . (27)

Thus, unlike the components of the metric perturbations from which it is constructed, the components
of the curvature tensor (25) are invariant under a gauge transformation.

Note that this is not just saying that the curvature tensor R – considered as a geometric object – is
invariant. That is a given, and it is invariant under any coordinate transformation, no matter how large
they might be, as is the metric g also for that matter.

This is very different in that it says that provided we only make small amplitude coordinate transfor-
mations (with |ξα,β| ∼ |hαβ|) the components of R do not change (at first order).

3.4 The linearised Einstein field equations in the Lorenz gauge

We will now obtain the Einstein tensor Gαβ – which, like Rαβµν is gauge invariant – in terms of the
metric perturbations hαβ, and then show how this relation can be greatly simplified by applying a gauge
transformation to hαβ. This results in the linearised Einstein field equations in the Lorenz gauge.

3.4.1 The Ricci tensor and scalar

Performing the contractions of the linearised curvature tensor (25) on its 1st and 3rd indices we obtain the
Ricci tensor:

Rαβ ≡ ηµνRµανβ = −1

2
(h,αβ − hµβ,αµ + hαβ

,µ
,µ − hαµ

,µ
,β) (28)

and contracting this gives the Ricci scalar:

R ≡ ηβνRβν = hµν
,µν − h,µ,µ. (29)
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3.4.2 The trace-reversed metric perturbation

It proves useful to introduce, at this point, the trace-reversed metric perturbation:

hαβ ≡ hαβ − ηαβh/2 (30)

which, as its name implies, has contraction, or ‘trace’, h ≡ ηαβhαβ = h
α
α = hαα− δααh/2 = −h as δαα = 4.

Note that the Einstein tensor is the trace-reversed version of the Ricci tensor.

3.4.3 The Einstein tensor

In terms of hαβ the linearised Einstein tensor: is

Gαβ = Rαβ − 1
2ηαβR = −1

2
[hαβ,µ

,µ
+ ηαβhµν

,µν − hαµ,β
,µ − hβµ,α

,µ
] (31)

where we have gained some compactification by invoking the ‘trace-reversed’ metric perturbation.
Equating this to (8πκ times) some given stress energy tensor Tαβ(~x) gives

hαβ,µ
,µ

+ ηαβhµν
,µν − hαµ,β

,µ − hβµ,α
,µ

= −16πκTαβ (32)

which, in principle, can be solved for hαβ.

3.4.4 The Lorenz or de Donder gauge

The field equations can be dramatically simplified if we invoke a small (i.e. |ξα,β| � 1) gauge transformation

xα
′
(xβ) = xα+ ξα(xβ), which in no way changes the Einstein tensor, to obtain a coordinate system in which

the 4-divergence hνµ
,µ

of the trace-reversed metric perturbation vanishes .

Proof:

• A gauge transformation changes the metric to

– h
(new)
µν = h

(old)
µν − ξµ,ν − ξν,µ

• and, it is easily shown, changes the trace-reversed metric to

– h
(new)
µν = h

(old)
µν − ξµ,ν − ξν,µ + ηµνξ

α
,α

• taking the derivative with respect to xν we get2 the 4-divergence

– h
(new),ν
µν = h

(old),ν
µν − ξµ,ν ,ν

• or

– h
(new),ν
µν = h

(old),ν
µν −�ξµ

• where � is the d’Alembertian operator defined by �f ≡ f,ν ,ν

• choosing the four ξµ to be solutions of �ξµ = h
(old),ν
µν gives h

(new),ν
µν = 0

In this gauge all but the first term in (31) vanishes. This gives the linearised Einstein tensor in the
so-called Lorenz gauge:

Gαβ = −1
2�hαβ. (33)

2Note that ξν
,ν = ηναξ

α,ν = ξα,α
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3.4.5 The field equations in the Lorenz gauge

Equating Gαβ above to 8πκTαβ gives the linearised Einstein field equations in the Lorenz gauge:

�hαβ = −16πκTαβ (34)

which can be solved, for a given matter ‘source term’ Tαβ on the RHS, to obtain hαβ, from which we obtain
the, more physically interesting, non-trace-reversed perturbation hαβ ≡ hαβ − ηαβh/2, and from which we
can obtain the Christoffel symbols – for use in the geodesic equation, for instance, and to modify other
physical equations using the ‘comma ⇒ semi-colon rule’ – and the curvature tensor R to use to calculate
geodesic deviation, for example.

One significant difference between this and Newtonian gravity is that here one can add to the solution
any ‘homogeneous’ solution that satisfies the wave equation �hαβ = 0. These may describe gravitational
waves.

3.5 Comments on gauge transformations in GR

A gauge transformation in electromagnetism is a change to the electromagnetic 4-potential ~A→ ~A′ = ~A+~∇ξ
where ξ(~x) is an arbitrary function of space-time. This leaves the electric and magnetic fields unchanged3

and can be used to simplify Maxwell’s equations and their solutions, particularly for problems involving
radiation from moving charges.

For example, in the Lorenz gauge, we demand that the 4-divergence of the potential vanish: A′µ
,µ = 0.

In exploiting this, we don’t need to actually solve the equation (�ξ = Aµ
,µ) that ξ needs to satisfy to effect

this simplification; we simply appeal to the fact that a solution exists, and then solve the simplified form of
Maxwell’s equations in which terms involving Aµ

,µ are dropped.
The EM gauge interaction has the additional property that, when coupled to the Schrödinger equation

by means of the substitution ∂µ ⇒ ∂µ − iq(Aµ/~) – which neatly explains the phenomenology of electro-
dynamics – the combined Maxwell-Schrödinger system is invariant if the wave function is simultaneously
changed to ψ ⇒ ψ′ = ei(q/~)ξψ. This is often said to mean that the EM gauge field Aµ exists in order that
the world be invariant under a local phase shift of the wave function.

Gauge transformations in linearised GR are quite similar (though without the ‘philosophical baggage’
relating to the unmeasurability of phase of wave functions). As in electromagnetism, and as we have
seen above, gauge transformations are extremely useful as they allow significant simplification of the field
equations.

The Einstein field equations relate the Einstein tensor G to the matter stress tensor through G = 8πκT
and these can, in principle, be solved to obtain a metric g and a stress tensor T that are compatible with each
other. These are all geometrical objects, entirely independent of any coordinate system. The components
of all these tensors, on the other hand, do depend on the coordinates.

In perturbation theory, however, the right hand side of the field equations is a ‘zeroth order’ quantity
whose components Tαβ we wish to specify as a function of the coordinates xα; at lowest order it is independent
of any first order ‘gauge’ coordinate transformations xα ⇒ xα

′
= xα + ξα that we might apply. For this

theory to make any sense, it is a logical necessity that the left hand side of the field equations should also
have components that, again at lowest non-vanishing order, are gauge independent, and it is reassuring,
but perhaps not surprising, that the components of the Einstein tensor and the Riemann tensor are indeed
gauge invariant.

But the components of the metric are not gauge invariant, nor are the components of the connection,
that appear in the geodesic equation. The general (complicated) form of the field equations (32) apply for
coordinate systems differing by any 1st order gauge change and therefore allow considerable freedom in the
metric, as expressed in the law for the transformation of the metric under a gauge shift (19). Equations
(32) are valid for a family of solutions hαβ for a given source term. The Lorenz-gauge field equations (34)

3As an aside, it was thought historically that the only physical effects came from the E and B fields and that the potential
~A could not be directly observed. But in 1949, Ehrenberg and Siday, who were using electron wave-optics to study electron
microscopes, noted that ~A could be directly observed using electron beam interference, as there is a shift of the fringes propor-
tional to the difference in the line integral of ~A along the two interfering paths. As they pointed out, this is a purely classical
wave-mechanical effect. Their paper went largely un-noticed. The effect was re-discovered independently by Aharonov and
Bohm in 1959. They put the word “quantum” in their title and their paper had a high impact.
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impose hαβ
,α

= 0 and thereby constrain the coordinate system, and result, with some reasonable additional
constraints, in an essentially4 unique solution.

Q: Explain why the Ehrenberg-Siday/Ahoronov-Bohm effect is ‘blind’ to a gauge transformation

4 The weak-field metric for stationary or nearly-stationary sources

4.1 The source term for non-relativistic matter

Many astrophysical systems have internal velocities that are very small compared to c. Examples are:

• the solar system: v ∼ 30 km/s = 10−4c

• galaxies: v ∼ 100− 300 km/s = 3− 10× 10−4c

• clusters of galaxies & and large scale ‘streaming’ motions: v ∼ 1000 km/s = 3× 10−3c

So any momentum density or energy flux density T 0i � T 00 = ρc2 by a factor ∼ v/c.
And the pressure or momentum flux density T ij is smaller still (by factor v2/c2 compared to T 00).
The same is true for thermal gas pressure Tij = (P/c2)δij ∼ ρ(σv/c)

2, since atom and molecular velocity
dispersions are σ2 ∼ GM/r from the equation of hydrostatic equilibrium.

And radiation pressure is similarly � ρc2 if the radiation density is small compared to the matter.
As mentioned, these conditions do not hold inside and around relativistic stars or close to black holes.

They also become invalid on cosmological scales where the Hubble velocity becomes comparable to c and/or
where, it is commonly believed, we are seeing the influence of dark energy, possibly in the form of a
‘quintessence’ field, in which case the stress of the field is not negligible. It also does not include the effect
of gravitational waves. But aside from that it has wide applicability.

So for a very wide range of circumstances, the right hand side of Einstein’s equation is

Tαβ '


ρc2

 = δ0
αδ

0
βρc

2 (35)

wherein all the blank entries are zero, to high precision.
The matter density distribution ρ in galaxies and clusters etc. also has slow temporal variation from

either internal motions for which ρ,t ' ρ/tdyn, or from net motions, for which ρ,t ∼ vρ,i. Both of these are
� ρ,ic.

4.2 The weak-field metric for stationary sources

A stationary source Tαβ is one for which ∂tTαβ = 0, so Tαβ is only dependent on the spatial coordinates.
This includes matter that has no motion, but also includes e.g. steady beams of matter or radiation or things
like a rotating flywheel.

If we postulate that such sources allow solutions where the metric perturbations are also stationary, then
the d’Alembertian operator becomes the Laplacian:

�hαβ = (−c−2∂2/∂t2 +∇2)hαβ = ∇2hαβ (36)

where ∇2 is the 3D Laplacian operator.
So the weak field equations are

∇2hαβ = −16πκTαβ (37)

with solution
hαβ = −4Φαβ(x) (38)

4As we will see in the following lecture, in asserting the Lorenz gauge conditions we have not yet exhausted all of the gauge
freedom at our disposal. However the additional gauge transformations are essentially travelling waves, and we exclude these
here because we seek a solution corresponding to a slowly varying or static source term.
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where

Φαβ(x) =
GN

c4

∫
d3x′Tαβ(x′)/|x− x′| (39)

so we are just summing the inverse square potentials of the source elements. This has the advantage of, as
well as solving Poisson’s equation∇2Φαβ = 4πGNc

−4Tαβ for each component, it has the boundary conditions
that, for a source of finite extent, all of the Φαβ tend to zero at spatial infinity.

Thus, by

1. imposing the divergence-free gauge condition hαβ
,β

2. requiring the solution be stationary, and

3. imposing the usual boundary conditions at spatial infinity in Poisson’s equation

we end up with a unique solution hαβ(x) and from this, by un-trace-reversing, we obtain the solution for
hαβ(x).

4.3 The Newtonian limit metric

A special case of a stationary source is that of a static mass distribution with zero pressure. As discussed
above, this has Tαβ ' δ0

αδ
0
βρc

2, so

hαβ(x) = −4δ0
αδ

0
βΦ(x) where

Φ(x) =
GN

c2

∫
d3x′ρ(x′)/|x− x′|

(40)

so Φ is the dimensionless potential given by Φ = φ/c2 where φ is the solution of Poisson’s equation ∇2φ =
4πGNρ for this density distribution.

In this, h00 = −4Φ, with all other components being negligibly small, or, in gory detail,

hαβ(x) =


−4Φ(x)

 (41)

and the trace is h = h
α
α = ηαβhαβ = 4Φ, from which we obtain the non-trace-reversed metric perturbation

hαβ = hαβ − ηαβh/2 =


−2Φ

−2Φ
−2Φ

−2Φ

 (42)

or, more succinctly,

hαβ(x) = −2Φ(x)δαβ (43)

to give, finally, the ‘line element’ ds2 = gαβ(x)dxαdxβ in the Newtonian limit of GR:

ds2 = −(1 + 2Φ(x))c2dt2 + (1− 2Φ(x))(dx2 + dy2 + dz2) (44)

This is an important result. It shows that the time-time component of the metric is g00 = −(1 + 2Φ) as
Einstein inferred from his tower and rocket thought experiments. So time is warped; or, at the very least
it shows that, for an observer maintaining constant r→ (x, y, z) – an allowed world-line for an observer as
it is timelike – the proper time and coordinate time intervals are related by dτ = (1 + Φ)dt (at first order).
But it also shows apparent ‘warping of space’ with gij = (1 − 2Φ)δij which we did not have before. The
question is: is this a real effect? Or is it an artefact arising from the choice of coordinates thrust upon us
by the gauge choice.
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4.4 The weak-field metric for nearly stationary sources

For a nearly stationary source Tαβ = Tαβ(x, t), but with |∂tTαβ| � c|∇Tαβ|, the stationary solution hαβ =
−4Φαβ with Φ(x, t)αβ calculated using the instantaneous Tαβ(x, t) as the source:

Φαβ(x, t) =
GN

c4

∫
d3x′Tαβ(x′, t)/|x− x′| (45)

should provide a metric with fractional error for the components that are on the order of v2/c2 or L2/c2T 2

(where L is the size of the system under consideration and T is its time variation scale). This is because, in
obtaining it we approximated the d’Alembertian �hαβ by the Laplacian ∇2hαβ and ignored c−2∂2

t hαβ. We

could, if we liked, compute a better solution perturbatively by adding a solution to ∇2h
(1)
αβ = c−2∂2

t h
(0)
αβ .

This (the zeroth order solution that is) is useful if we wish to calculate effects that are of 1st order in
the velocity such as those sourced by the momentum density T0i/c, which being equal to the energy flux
density (divided by c2) implies time-variation of the leading order T00.

5 The physical implications of the weak-field metric

We will now mostly specialise to the case of a static (non time-varying) metric, for which Φ(~r) = Φ(r) and
explore some of the physical properties of this space-time.

5.1 The light-cone structure and the coordinate speed of light

In inertial coordinates in Minkowski space the light cones have 45-degree opening angle and have as axis
the time coordinate.

A first step to tease out the physical meaning of the Newtonian limit metric is to ask what do the light
cones look like in this weakly perturbed space-time (with this particular choice of coordinates or ‘gauge’)?

• consider a point (event) P → (ct, x, y, z)

• and a neighbouring event P ′ → (c(t+ dt), x+ dx, y + dy, z + dz)

• and require that they have a null separation ds2 = 0, so they can be connected by the path of a
massless particle. This implies:

– dr2 ≡ dx2 + dy2 + dz2 = (1 + 2Φ)/(1− 2Φ)c2dt2

– so the light rays at a point have dr/dt = c
√

(1 + 2Φ)/(1− 2Φ) ' (1 + 2Φ)c

– which is independent of direction, so the light cones still have circular sections and have axis
aligned with the t-direction

– the light-cones are not tilted in this coordinate system (as they would be, for example, if there
were a non-zero off-diagonal components like g0x in the metric)

– since the Newtonian potential Φ is negative – as we require Φ→ 0 at spatial infinity – the light
cones will have dr/dt < c

– so the coordinate speed of light is slightly less than c

– i.e. the opening angle of the light-cones is slightly less that 45-degrees, as illustrated in figure 1
(highly exaggerated)

• for a bounded gravitating system the light cone structure becomes Minkowskian as r → ∞ where
φ→ 0

Does the fact that dr/dt < c mean that an observer would perceive light to be moving slower that c?
Not at all. This is the coordinate speed . The physical speed as measured by any observer is still c.
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ct

r
ϕ(r)

Figure 1: Schematic view of the light cones in the weakly
perturbed geometry caused by a static mass distribution
with Newtonian potential at bottom. At large r the
space-time becomes Minkowskian but more generally the
light-cones are squashed and the coordinate speed of light
dr/dt = (1 + 2Φ)c is less that c. Light apparently be-
haves rather like it does in a medium with refractive index
n = 1/(1+2Φ) ' 1−2Φ. Note that, as measured in physical
coordinates by any inertial observer the light-cones always
have 45 degree opening angle. What this figure is showing
us is that, plotted in our coordinate system, the light-cones
appear to be squashed.

5.2 Constant-r observers

As mentioned, the paths of constant r are time-like and are therefore possible world-lines of physical ob-
servers.

Let’s imagine a family of such observers, each of whom has constant r. If the potential is static, that
means that these observers maintain unchanging distances from one another.

We will see shortly that, just as in Newtonian gravity, freely falling – or inertial – observers will not
remain at fixed r. So constant-r observers must be accelerated in some way. This could be by means of
rocket motors or perhaps by some rigid, but light, scaffolding.

For concreteness, let’s imagine that they live in some gravitating system composed of non-interacting
matter and that they are maintained in their fixed r positions by a rigid lattice of rods as illustrated in
figure 2.

Figure 2: Constant-r observers. In order to maintain constant
r, observers in the weak-field gravity of, say, a cluster of galax-
ies, or some other cosmic structure, need to be accelerated
(their world-lines, as we shall see, are not geodesics). They
could be accelerated by rocket motors, or by having some kind
of rigid lattice that supports them as shown here (with apolo-
gies to M.C. Escher and Albert Einstein). These observers are
fully aware of their acceleration. If they stand on a weighing
scale it registers their weight and if they release test particles
they will see these accelerate with respect to them. As they are
accelerated, light signals they exchange will be ‘gravitationally’
redshifted. If they observe one another’s clocks, they will see
them drift steadily out of synchronisation.

And let’s also assume that they carry clocks measuring proper time τ , and that at some coordinate time
t0 – i.e. at the point on their world-lines that has t = t0 – their clocks all read τ = 0 . We can, if we like,
imagine that they have synchronised their clocks by exchanging light signals with their neighbours.

5.3 The warping of time

The gravitational potential Φ appearing in g00 = −(1+2Φ), and dτ2 = −ds2 = −g00dt
2 causes the coordinate

time t to advance at a different rate to the proper time τ measured by constant-r observers:

dτ/dt =
√

1 + 2Φ ' 1 + Φ ≤ 1 (46)
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If the observers’ clocks were set to τ = 0 on some constant-t hyper-surface then the events when their
clocks read τ > 0 will not lie on a constant-t hyper-surface, as illustrated in figure 3. This is an observable
physical effect.

ct

r
Φ(r)

ct0

τ = constant
Δt ≃ (1 − Φ)Δτ

accelerated 

constant-r

observer

τ = 0

Figure 3: The warping of time: At the bottom is sketched
the dimensionless potential Φ = φ/c2. Above is a space-
time diagram showing surfaces of constant proper time as
measured by a set of observers maintaining constant r, and
whose clocks were synchronised at coordinate time t = t0.
They are accelerated observers, as indicated by the space-
shuttle whose rocket is keeping this observer from falling in
the potential. These observers’ clocks drift steadily out of
synch; something they can measure by simply looking at a
neighbour’s clock. The rate of de-synchronisation they see
is in perfect accord with what they would expect if they
were in flat space-time with the same acceleration as they
perceive.

The deeper the potential, the more advanced will be the coordinate time for a given τ .
This is a ‘stretching’ of the time coordinate – the longer we wait, the larger becomes the difference

between proper and coordinate time. This is the “gravitational time dilation” predicted by Einstein for
accelerated observers.

While intervals that have dτ = 0 when the clocks read zero are purely space-like in the observers’ frames
(they ‘lie in the rest-frame of the observers’), they do not remain so. At later times pairs of events that have
dτ = 0 are not simultaneous in the observer’s frame.

5.4 The gravitational redshift

If the potential Φ(r) is independent of time then world-lines of photons ‘falling’ into the potential from a
stationary observer at large distance will have identical form and will simply be shifted in coordinate time
as illustrated in figure 4.

ct

r

Δt(∞)

Δt(r) = Δt(∞)
Figure 4: This shows schematically paths of photons or,
if you like, pulses of light. They lie locally in the light
cones. In a static potential, the paths for successive pulses
are identical, being merely shifted in coordinate time. That
means that the coordinate time interval between two pulses
at the receiver must be the same as at the emitter. But
proper time advances at a different rate to coordinate time;
the clocks deeper in the potential run slow. This is like the
frequency of a quantum mechanical particle; the lower the
energy the lower the frequency. It follows that the observers
deeper in the potential will observe the pulses from more
distant observers to arrive at an increased rate with respect
to their proper time. And since the ‘pulses’ might as well
be successive wave-crests of light, that means that they will
see the light at a higher frequency; i.e. ‘blue-shifted’.

This means that the coordinate time intervals between reception of pulses (or the period of the light)
will be the same, regardless of position of the observer.

But because of the warping of time this means that the proper time intervals between arrival of light
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pulses and therefore also the period of the radiation will be different from that in the emitter’s frame:

dτrec

dτem
=

√
g00(rrec)

g00(rem)
=

√
1 + 2Φ(rrec)

1 + 2Φ(rem)
' 1 + Φ(rrec)− Φ(rem). (47)

This is a directly observable effect, and therefore shows that the warping of time is a real physical
phenomenon, and not simply a coordinate effect.

An observer at constant r in a potential well will see light from a distant stationary observer blue-shifted,
so the measured wave-length will be less than the proper wave-length.

The inverse of this effect was first observed in the light emitted by the white dwarf Sirius-B. It is called
the gravitational redshift effect. The redshift z is defined as

1 + z ≡ dτrec

dτem
=
λrec

λem
. (48)

It is not difficult to intuit what would happen if there is a time-varying potential. If we see light that has
passed through a static potential somewhere along the light-path we will see the light at the same frequency
as emitted. That’s because the light is red-shifted on emerging from the potential well by the same amount
as it is blue-shifted falling in.

If, on the other hand, the potential well were decreasing with time, the red-shift coming out would not
balance the blue-shift falling in, and the result would be a net blue-shift. We would say that the photons
had gained energy from a ‘gravitational sling-shot’ effect. In cosmology this is known as the ‘Rees-Sciama’
or ‘integrated Sachs-Wolfe’ (ISW) effect.

We can also attribute this affect to a changing ‘optical path length’: The same effect would be seen if
we observed a source through some material with a time-varying refractive index n. If n is decreasing then
so is the number of waves of light within the object. So waves have to emerge from the object at a greater
rate than they enter.

5.5 Light deflection from the gravitational redshift

We can use the gravitational redshift formula to (mis)calculate light deflection. As illustrated in figure 5,
if we have a beam of light (indicated by the wave-fronts) the wavelengths, as measured by local constant-r
observers will shrink: λ = λ0(1 + Φ(r)) where λ0 is the proper wavelength as emitted from a source at
infinity.

The shrinking is a function of position, being greater for the side of the beam that passes deeper in the
potential (closer to the Earth in the figure).

This gives us ‘Snell’s law’ for the deflection of the direction of the light beam:

dn̂/dλ = −∇⊥Φ (49)

where λ measures distance along the path.
This gives a deflection in accord with that one would get by applying the equivalence principle (as

sketched in the lower left of the figure) to argue that the deflection seen locally by these observers (who
must be accelerated to maintain constant-r) would be the same as an identically accelerated observer in
empty space would see.

In Newtonian gravity, the deflection of the path of a particle moving with speed v is

dn̂/dλ = −v−2∇⊥φ . (50)

So comparison with Snell’s law (49) above, together with Φ = φ/c2, would lead one to predict that light
deflection by the Sun, for example, would be the same as the Newtonian prediction for a particle moving at
the speed of light. Whereas the deflection measured by Eddington (and predicted by Einstein) is actually
twice that.

This result is also at odds with what we found for the ‘coordinate speed of light’ in §5.1 above. There
we found that, as far as the coordinate speed of propagation is concerned, light in a gravitational potential
Φ behaves like light in a refractive medium with refractive index

n(r) ' 1− 2Φ(r) (51)
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∇Φ

λ0

λ = λ0(1 + Φ(x + h))

λ = λ0(1 + Φ(x))

h

Δθdef = Δλ /h = λ0 ∇⊥Φ
deflection in propagating 1 wavelength

gradient perpendicular

to the path

Snell's law:

dn̂ /dl = − ∇⊥Φ

n̂

Figure 5: Light deflection from the gravitational redshift. Constant-r observers near the Earth will see
radiation from a distant source blue-shifted. The wavelength will be shrunk in a differential manner, and
this allows us to derive ‘Snell’s law’ for the rate of change of direction of a beam with path length. This is
in accord with what one would infer using the equivalence principle.

which, in the normal version of Snell’s’ law dn̂/dλ = ∇⊥n also leads to the extra factor 2 observed and
predicted from GR.

So what is wrong with the deflection inferred from the gravitational redshift (or from the principle of
equivalence)?

5.6 The spatial geometry of t = constant (hyper)surfaces

The reason the above argument gives the wrong answer is that in figure 5 we are implicitly imagining the
spatial hypersurfaces of constant coordinate time to be flat. So while the gravitational redshift formula
– or the equivalence principle – correctly gives the local deflection one of our accelerated observers would
measure, the net bending angle is different because of the warping of space.

In a nutshell, the spatial geometry in a sphere of matter, for instance is positively curved. The geometry
of the equatorial plane, for example, is like that of the 2-dimensional surface of a bowl in 3D. This means
that there is an additional path length for light paths that go through the centre of the sphere as compared
to those that do not probe as deeply.

Think about nearly planar EM waves from a very distant source approaching the sphere. Passing through
the potential well of the sphere, the wavelength is reduced as much as illustrated in figure 5. This means
that the wavefronts emerging will be distorted, with the parts that passed through the sphere retarded.
That means that the light-rays – being normal to the wavefronts – will be converging. But if the space is
positively curved inside the sphere there will be an additional retardation. The spatial curvature results in
an extra light deflection that is equal to the amount inferred from the gravitational redshift. This is the
origin of the famous factor 2 difference between Newtonian and Einsteinian light-bending predictions.

To anlyse this further, consider the line element on the hypersurface t = constant:

ds2 = (1− 2Φ(r))(dx2 + dy2 + dz2) (52)

where Φ is the solution of Poisson’s equation (divided by c2).
This, by the way, is an example of what is known as a ‘conformal transformation’ , in which have one

metric – here the Euclidean line element ds2 = dx2 + dy2 + dz2 in Cartesian coordinates – multiplied by
a function of position. The reason for this terminology is that, in this kind of mapping, angles between
crossing lines are unchanged.
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Let’s consider, for simplicity, the spherically symmetric potential created by a spherically symmetric
mass distribution: Φ(r) = Φ(r) where r = |r|.

Making a change of variables:

x = r sin θ sinφ

y = r sin θ cosφ

z = r cos θ

(53)

in terms of which dx2 + dy2 + dz2 = dr2 + r2(dθ2 + sin2 θdφ2), so the line element becomes

ds2 = (1− 2Φ(r))(dr2 + r2(dθ2 + sin2 θdφ2)). (54)

Trajectories of photons in this geometry can be taken to lie in the equatorial plane θ = π/2, the 2-
dimensional surface whose line element is

ds2 = (1− 2Φ(r))(dr2 + r2dφ2). (55)

As this is 2-dimensional, the curvature is described by a single function of radius r, which we might take to
be the Ricci scalar.

A simpler, yet highly useful, way to visualise the geometry in spherically symmetric spaces like this is to
ask: what is the shape of a circularly symmetric surface in three spatial dimensions with vertical displacement
from the equatorial plane z that has the same line element? Such a surface is called an ‘embedding diagram’ .

χz

dχ
dz = z′ dχ

ds = dχ 1 + z′ 
2

ds2 = (1 + z′ 
2)dχ2 + χ2dϕ2

z′ ′ < 0

z′ ′ > 0
bowl-like

curvature

trumpet-horn

curvature

Figure 6: An ‘embedding diagram’ is a circularly
symmetric surface in 3 spatial dimensions (gen-
erated by rotating the line z = z(χ) shown here
about the z-axis) which has the same intrinsic
geometry as the equatorial plane (θ = π/2) in
a spherically symmetric curved 3-space like (54).
The line element is given by the boxed formula at
the bottom. This matches that for the equatorial
plane (55) if z′ =

√
2rΦ′.

To make an embedding diagram, we define a new radial coordinate χ such that gφφ = χ2, which here
is χ = (1 − Φ)r (to 1st order in Φ � 1). So χ is an ‘angular diameter distance’; it is defined such that on
object of proper size dl subtends, at the origin, an angle dφ = dl/χ.

As shown in figure 6, the length of a radial line segment lying in this surface is ds = dχ
√

1 + z′2, where
z′ ≡ dz/dχ (but can be considered to be dz/dr since z is a first order quantity and, to zeroth order, r and
χ are the same).

The total line element in this surface for a displacement in both χ and azimuthal angle is obtained by
adding, in quadrature (as they are perpendicular displacements) this ds and a tangential ds = χdφ:

ds2 = (1 + z′2)dχ2 + χ2dφ2 (56)

But χ = (1−Φ)r implies dχ = (1−Φ− rΦ′)dr, where Φ is a first order quantity, so we can think of its
derivative Φ′ as being with respect to either r or χ, or dχ2 = (1− 2Φ− 2rΦ′)dr2 so this is

ds2 = (1 + z′2 − 2Φ− 2rΦ′)dr2 + (1− 2Φ)r2dφ2. (57)

which is the same as (55) if

z′ = dz/dr =
√

2rΦ′ (58)

where we have taken the positive root as Φ′ > 0 and we have taken the sign of z′ to be positive since we
want z to be negative as in figure 6. This is the equation that the height z of the surface must satisfy in
order to have the same intrinsic geometry as the equatorial plane in the 3-space (54).

Of particular interest is the product of first and second derivatives of z, which tells us whether the
curvature is positive (like a bowl) or negative (like a trumpet horn). This is

z′z′′ = rΦ′′ + Φ′. (59)
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Alternatively, if we calculate the Christoffel symbols for (56) and from these calculate the curvature
tensor we get, for Rrφrφ for example:

Rrφrφ = −3rz′z′′ = −3r(rΦ′′ + Φ′). (60)

5.7 Uniform density sphere

Consider a non-expanding sphere of uniform density ρ and radius R.
For r > R, the potential that has the sensible boundary condition Φ→ 0 as r →∞ is Φ(r) = −GM/rc2 =

−(4π/3)GρR3/rc2.
For r < R, the potential gradient is dΦ/dr = (4π/3)Gρr/c2 which we can integrate to get Φ =

(2π/3)Gρr2/c2+constant. Matching smoothly to the solution for r > R gives the constant to be−2πGρR2/c2.
So

Φ(r) = 2π
3 GρR

2/c2

{
r2/R2 − 3 for r < R
−2R/r for r > R

(61)

which is illustrated in figure 7.

Figure 7: Gravitational potential on the
equatorial plane for a uniform density
sphere plotted as the depth of a sur-
face. The potential is parabolic within
the sphere – and the potential ‘surface’
has positive (bowl-like) curvature – and
falls off as 1/r outside the sphere, so
the potential surface has negative curva-
ture like a trumpet-horn. The embed-
ding diagram for this – that is to say
the circularly symmetric surface in 3D
with height z(r) that has the same met-
ric as the equatorial plane metric ds2 =
(1− 2Φ)(dr2 + r2dφ2) looks qualitatively
somewhat similar.

The potential gradient Φ′ ≡ dΦ/dr is

Φ′(r) = 4π
3 GρR/c

2

{
r/R for r < R
R2/r2 for r > R

(62)

which, as it should be, positive everywhere, and is continuous at the edge of the sphere, while the curvature
parameter

rΦ′′ + Φ′(r) = 4π
3 GρR/c

2

{
2r/R for r < R
−R2/r2 for r > R

(63)

is discontinuous at r = R and evidently we have positively curved, bowl-like, geometry inside the sphere,
with z′z′′ ∝ r, and negatively curved, trumpet horn-like (or locally saddle-like), geometry outside with the
curvature parameter falling off as −z′z′′ ∝ 1/r2.

The component of the Riemann tensor Rrφrφ = −3rz′z′′ scales in proportion to r2 within the sphere
and as 1/r outside. This component is what appears in the geodesic deviation equation for the second
rate of change of radial separation for a pair of spatial geodesics with instantaneously tangential path
U→ (U r, Uθ, Uφ) = (0, 0, dφ/dλ).

d2∆r

dλ2
= −Rrφrφ∆r

dφ

dλ

dφ

dλ
(64)

for such trajectories dφ/dλ = 1/r, so we have positive focussing ∆̈r ∝ −∆r at a rate which is independent
of location within the sphere, and de-focussing outside with ∆̈r ∝ ∆r/r3 as one would expect for a tidal
field.
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5.8 Embedding diagrams for other spherical and cylindrical models

For a spherical structure with a power law density profile ρ ∝ r−γ , the mass enclosed within r is M =
4π
∫
drr2ρ ∝ r3−γ , and the potential gradient is Φ′ ∝M/r2 ∝ r1−γ . With Φ′ = αr1−γ (with α a constant),

Φ′′ = (1 − γ)αr−γ so rΦ′′ + Φ′ = (2 − γ)αr1−γ . So we have positive (bowl-like) curvature if γ < 2 and
negative (trumpet-horn-like) curvature if γ > 2.

The dark matter structures that form in numerical simulations of cosmological structure formation are
found to be well described by so called ‘NFW profiles’ (after Navarro, Frenk and White). These have γ = 1
in the central parts and γ = 3 at large radii. The transition between these extremes is rather extended, and
so they behave, to a crude approximation as ‘locally power-law like’ and the spatial curvature transitions
from positive to negative as one moves outwards. Over a fairly wide range of radii straddling the ‘virial
radius’ (the radius where the interior density is about 200 times the mean cosmological density) the slope
is γ ' 2. This radius delineates the transition from the equilibrated interior – which has come to ‘virial
equilibrium’ – and the outskirts, where matter is falling in for the first time.

Consistent with this, a much used earlier model for e.g. clusters of galaxies is the so-called ‘isothermal
sphere’ model, which has ρ ∝ r−2 and galaxies – which have dark matter halos with roughly flat ‘rotation
curves’ – also have ρ ∝ r−2.

These ρ ∝ 1/r2 models are therefore of considerable practical interest. They are particularly interesting
here because they have no curvature. Does that mean that curvature plays no role in light deflection for
such structures?

θ = πz′ 2

conical but

locally flat


space

Figure 8: Left side shows an embedding di-
agram for an ‘isothermal-sphere’ (or ‘flat-
rotation curve’ halo). The spatial geometry
of the equatorial plane is locally flat, but coni-
cal. Even without the gravitational redshift ef-
fect (which tends to focus light as wavelengths
shrink in the potential well) an observer look-
ing at distant sources through such an object
would see a deflection and could see multiple
images of a background source. The right hand
figure shows the geometry flattened out into a
plane with the missing ‘wedge’ of angle on the
order of θ ∼ v2/c2. More precisely, the effect
of the geometry is to double the deflection as
compared to that predicted from time-dilation
alone.

The answer is yes and no. For γ = 2, z′ =
√

2rΦ′ = constant. That tells us that z ∝ r, so the embedding
diagram is conical . So the space is locally flat, but viewed globally there is an ‘angular deficit’. With z′ =
constant, the metric (56) can be recast – by means of the transformation r =

√
1 + z′2χ – to a locally flat

metric
ds2 = dr2 + r2dφ′2 (65)

but where φ′ = φ/
√

1 + z′2. So there is no local curvature, but, rather than ranging from 0 to 2π, φ′ ranges
from 0 to 2π/

√
1 + z′2 ' 2π − πz′2 so the geometry is like that of a sheet of paper where we have excised a

wedge of angle θ = πz′2 and then glued the edges together to make a cone, as illustrated in figure 8.
The potential gradient for ρ ∝ 1/r2 goes like 1/r which, integrated, gives a potential Φ(r) ∼ log r. The

same logarithmic potential arises for a ‘cosmic-string’, which behaves like a line of constant linear mass
density. Gauss’s law tells us the gradient of the potential Φ′ integrated over the surface of a cylinder of
radius r is proportional to the mass enclosed, so again Φ ∝ 1/r and the potential is logarithmic in r and
the spatial geometry of a slice perpendicular to the string is again conical.

5.9 The spatial geometry of t 6= constant hypersurfaces

A word of caution is in order: the spatial curvature depends, in general, on the choice of hyper-surface.
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In the appendix (§A) we calculate the curvature in a sphere by comparing the integrated proper radius,
and also the area, of the region enclosed within a given circumference. These measures of curvature also
depend on the choice of hyper-surface.

Here we have considered the hyper-surfaces of constant coordinate time t. These are orthogonal to the
world-lines of the particular family of observers we have chosen, their essential characteristic being that they
maintain constant separation from one another.

Had we chosen a different family of observers, for example a family of observers that are expanding
away from one another, and measured the radius on a hyper-surface that is orthogonal to their world-lines
we would get a smaller result. That is because, in their frame of reference, the radial distances are length
contracted. So, while they would agree on the proper size of the circumference, they would disagree with
our observers as to the radius.

This, as we saw previously, is precisely what happens in cosmology where, in the homogeneous FLRW
model there is a positive density of matter, so non-expanding observers in some region of space would
measure space to be positively curved, but, as measured by so-called ‘co-moving’ observers, the geometry
of hypersurfaces orthogonal to their world-lines may be flat or negatively curved.

However, it is impossible to ‘flatten-out’ the warping of space and time simultaneously, unless there is
no matter present.

Q: flesh out the above. For observers within a constant density sphere of matter calculate the expansion
velocity field needed to flatten the spatial geometry. Show how the expansion rate is related to the density.

6 Particle motion in weak field gravity

Physical particles move on geodesics of this curved space-time. We would expect this to conform to the
Newtonian behaviour for slowly moving particles. We will show that this is indeed the case, and we will
find that the motion of such particles is entirely determined by the time-time part of the metric. We will
also develop the geodesic equation for massless particles like photons, and show that these are, in addition,
sensitive to the curvature of space, and this explains the famous factor 2 enhancement over the Newtonian
prediction. We then look at this from a wave-mechanical perspective.

6.1 Equation of motion for non-relativistic particles

Massive particles parallel transport their 4-velocity ~U = d~x/dτ so 0 = ∇~U
~U = UβUα;β = UβUα,β +

ΓαµνU
µUν so UβUα,β = dUα/dτ = −ΓαµνU

µUν or,

d2xα

dτ2
= −Γαµν

dxµ

dτ

dxν

dτ
. (66)

As discussed previously, a nice way to show this is to show that these are equivalent to the Euler-Lagrange
equations obtained by extremising S =

∫
dλL(xα, ẋα) =

∫
dτ
√
−gαβ(~x)ẋαẋβ with ẋα = dxα/dτ .

The Christoffel symbols are of first order in the metric perturbations, so we can take the zeroth order
approximation to the 4-velocity on the RHS which, for a non-relativistic particle, is ~U → Uµ ' (c,0) = cδµ0
and so

dUα/dτ = −c2Γα00. (67)

The Christoffel symbols are, to first order in the metric perturbations,

Γαµν = 1
2η

αγ(hγµ,ν + hγν,µ − hµν,γ) (68)

from which, using the Newtonian limit metric hµν = −2Φδµν , we obtain5

Γ0
00 = −1

2h00,0 = Φ,0

Γi00 = −1
2h00,i = Φ,i

(69)

so only the time-time component of the metric perturbation plays any role here.
The latter, with Φ = φ/c2, gives the equation of motion

d2xi/dτ2 = −φ,i (70)

5We write (69) as two separate equations to avoid writing the, formally illegitimate, equation Γα00 = Φ,α.
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or, if you prefer,

d2r/dτ2 = −∇φ (71)

just as in the Newtonian theory.
This shows that freely falling particles do not remain at fixed r; observers maintaining constant r (as

considered above and illustrated in figure 2) must be accelerated.
This is what allows us to connect the parameter κ to Newton’s constant of gravitation: κ = GN/c

4.
At linear order, we may replace proper time by coordinate time here. This means that, if we are interested

in the deflection of a particle moving with speed v, we can simply project out the components perpendicular
to the instanteneous path, and we have, for the 2nd derivative of displacement transverse to the path with
respect to path length λ,

d2r⊥
dλ2

= − 1

v2
∇⊥φ (72)

since d/dt = vd/dλ and therefore6 d2/dt2 = v2d2/dλ2.

6.2 Energy and Hamiltonian of non-relativistic particles

The time component of the non-relativistic geodesic equation (67), together with (69), says dU0/dτ =
−c2Γ0

00 = −c2Φ,0 = −φ,0 = −c−1∂φ/∂t. In special relativity, the energy is E = mcU0 = γmc2. So the
geodesic equation would seem to say dE/dτ = −m∂φ/∂t. That is dimensionally correct and looks like the
equation for the rate of change of the Hamiltonian, but it doesn’t have the right sign. What’s wrong with
this picture?

6.2.1 Newtonian dynamics

Let’s first briefly review the classical mechanics of a non-relativistic particle in a Newtonian gravitational
potential.

– The starting point is the Lagrangian: the kinetic energy minus potential energy, or

L(r, ṙ, t) = m|ṙ|2/2−mφ(r, t). (73)

– The action (a functional of the particle path) is

S =

∫
dtL. (74)

– The momentum is
p ≡ ∂L/∂ṙ = mṙ. (75)

– The Euler-Lagrange equation obtained by requiring the action S to be extremised is

dp/dt = ∂L/∂r = −m∇φ. (76)

– The Hamiltonian is
H(r,p, t) ≡ ṙ · p− L(r, ṙ, t) (77)

or
H(r,p, t) = |p|2/2m+mφ(r, t) (78)

i.e. kinetic energy plus potential energy.
– Hamiton’s equations are

ṗ = −∂H/∂r and ṙ = ∂H/∂p (79)

and do not, in themselves, give us anything new, but in dH(r,p, t)/dt = ṙ∂H/∂r + ṗ∂H/∂p + ∂H/∂t, they
tell us that the rate of change of the Hamiltonian obeys dH/dt = ∂H/∂t or

d

dt
(|p|2/2m+mφ) = m

∂φ

∂t
(80)

6You might think we should have the time derivative of v showing up in d2/dt2, which is correct. But here we are applying
it to a 1st order quantity, so we can take v to be constant at lowest order.
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which we notice has the opposite sign to what the geodesic equation is giving for d(mcU0)/dt.
– Finally, with dφ/dt = ∂φ/∂t+ ṙ ·∇φ, this gives

d(|p|2/2m)/dt = −mṙ ·∇φ (81)

which says the rate of change of the kinetic energy is the rate at which the gravitational force −m∇φ is
doing work on the particle.

6.2.2 Correspondence between Newtonian dynamics and weak-field theory

We now establish the correspondence between the foregoing and weak-field gravity theory.
– The relativistic energy-momentum relation is

gαβp
αpβ = −m2c2 (82)

or, here, with gαβ = ηαβ + hαβ = ηαβ − 2Φδαβ,

(1 + 2Φ)(p0)2 = m2c2 + (1− 2Φ)|p|2. (83)

– But |p|2/m is generally of the same order as mφ = mc2Φ and is therefore also a 1st order quantity, so we can
drop the Φ on the right hand side to obtain (1+2Φ)(p0)2 = m2c2+|p|2 so p0 = mc

√
(1 + |p|2/m2c2)/(1 + 2Φ)

or, Taylor expanding and keeping only terms up to 1st order,

cp0 = mc2 + |p|2/2m−mφ (84)

– This is evidently not the same as the Hamiltonian. While it has units of energy, the potential enters with
the wrong sign. In fact, it is the rest-mass energy mc2 plus the Newtonian Lagrangian7.
– But lowering the index on p0 using p0 = g0αp

α = g00p
0 = −(1 + 2Φ)p0 gives

−cp0 = mc2 + |p|2/2m+mφ (85)

which is the Newtonian Hamiltonian (plus the rest-mass energy)
– So what we would normally think of as the total energy (i.e. the Hamiltonian) should not be associated
with the time component of the momentum 4-vector ~p, rather it is (−c times) the time component of the
momentum 1-form p̃.
– Which fits with the latter, which of course, being a 1-form, has to be the derivative of something , being
the derivative of the action S(~x) (defined à la Hamilton and Jacobi as being the action for a family of
particles that started at the same point in space-time with a range of momenta and for which p = ∇S and
H = −∂S/∂t):

p̃ = d̃S (86)

where
d̃S → ∂αS = (c−1∂tS,∇S) = (−H/c,p). (87)

That all comes from the normalisation of the 4-momentum. To get the rate of change of the energy we
can use the covariant form of the geodesic equation:

dUα/dτ = 1
2gνβ,αU

βUν (88)

which tells us that, should the metric be independent of the αth space-time coordinate, the corresponding
covariant component of the 4-momentum pα = mUα is a constant along the particle trajectory.

So if φ, and therefore also the metric, is independent of time, dp0/dτ = 0 and so mc2 + |p|2/2m+mφ (or
rest mass energy plus Newtonian kinetic plus potential energies) is constant along the particle trajectory.

7That there should be a very close connection between p0 and L is reasonable. In Newtonian mechanics, particle paths are
those which extremise

∫
Ldt, while geodesics are paths that extremise

∫
dτ =

∫
(dt/dτ)−1dt =

∫
c(dx0/dτ)−1dt =

∫
(mc/p0)dt.

But this says that, up to an additive constant and some constant multiplicative factor, it is the inverse of p0 that must be
equivalent to L. But here p0 ' mc(1 + (|p|2/2m−mφ)/mc2) so (mc/p0) ' (1− (|p|2/2m−mφ)/mc2) = 1− L/mc2.
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On the other hand, if the potential is changing with time, the geodesic equation, with ~U → (c,0) in the
factors on the right hand side, as appropriate for a non-relativistic particle, implies

d

dτ
(−cp0) =

d

dτ
(|p|2/2m+mφ) = −1

2mc
3g00,0 = m

∂φ

∂t
. (89)

As we are working to first order precision we can replace d/dτ with d/dt, so this is saying, reassuringly,
dH/dt = ∂H/∂t with Hamiltonian H(p,x, t) = |p|2/2m + mφ(x, t), and using the convective derivative
dφ/dt = ∂φ/∂t+ ṙ ·∇φ as above, this in turn implies8

d(|p|2/2m)/dt = −mṙ ·∇φ (90)

in accord with the Newtonian result (81) that the change of kinetic energy is equal to the work done by the
gravitational force.

Note that while the potential energy mφ appears in both p0 and p0 (though with opposite sign), neither of
these is what one of our constant-r observers would measure. Since these observers have Uα = (dt/dτ, 0, 0, 0)
and U0 = dt/dτ = (1− Φ), the energy they measure is, to first order,

Eobs = −p̃(~U) = −U0p0 = mc2 + |p|2/2m (91)

which, as expected, is just the kinetic energy (plus rest-mass energy).

6.3 Relativistic particle dynamics

In the previous section we considered particle dynamics in the non-relativistic limit. Here we relax that
restriction and consider motion of particles of arbitrary momentum. As above, we will work very much in
‘3+1’ formalism. We will first develop the formalism for an arbitrary metric and then specialise to weak-field
geometry.

6.3.1 Classical mechanics of relativistic particles

The starting point here is the differential action dS for a relativistic massive particle:

dS = −mc2dτ (92)

where m is the rest mass.
This form of the action guarantees that world-lines that extremise the action are paths of extremal

proper time; i.e. geodesics. To justify the factor −mc2, note that in flat space-time, dτ = dt/γ, so then

dS = −γ−1mc2dt ' dt(−mc2 + 1
2mv

2 + . . .), (93)

which says that the Lagrangian L = dS/dt for a free particle is, in the non-relativistic limit v � c, and aside
from the constant −mc2, just equal to the kinetic energy, as one would expect. Another nice thing about
the action S defined through (92) is that it is evidently coordinate – and therefore gauge – independent9; it
is a Lorentz scalar.

In general coordinates, dτ = −ds/c with ds2 = gαβdx
αdxβ so the differential action is

dS = −mc
√
−gαβẋαẋβdt (94)

where ẋα ≡ dxα/dt = (c, ẋ), or dS =
∫
dtL where the Lagrangian is

L(x, ẋ, t) = −mc
√
−gαβ(~x)ẋαẋβ (95)

8In the foregoing, we worked only to first order precision, keeping terms like mφ and |p|2/2m but dropping terms involving
their products. We see in (90) that the rate of change of kinetic energy is of higher than 1st order. But there is no inconsistency
here. The smallness of d(|p|2/2m)/dt is simply because, in the Newtonian limit, things move slowly. For a particle moving in
a potential well of size ∼ L that is changing on the ‘dynamical’ (i.e. orbital) time-scale, the change in the kinetic energy of the
particle in one dynamical time ∆t ∼ L/|ṙ| is ∆|p|2/2m ∼ m∆t|r ·∇φ| ∼ mL|∇φ| ∼ mφ and is a 1st order quantity.

9It is interesting to contrast this with the action for a charged particle in electromagnetism, for which dS = (−mc2−qUαAα)dτ
which is not gauge invariant.
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and the space and time dependence derives from the metric.
The canonical momentum is

pi ≡
∂L

∂ẋi
= mc

gαiẋ
α√

−gαβẋαẋβ
(96)

and the Euler-Lagrange equation is

dpi
dt

=
∂L

∂xi
= 1

2mc
gαβ,iẋ

αẋβ√
−gαβẋαẋβ

(97)

or, dividing by τ̇ =
√
−gαβẋαẋβ/c and using ẋα/τ̇ = dxα/dτ = Uα,

dpi
dτ

= 1
2mgαβ,iU

αUβ (98)

where the right hand side is m times the right hand side of the covariant form of the geodesic equation
dUi/dτ = 1

2gαβ,iU
αUβ, leading us to identify the canonical momentum pi and mUi:

pi ≡ ∂L/∂ẋi = mUi. (99)

The Hamiltonian – or ‘canonical energy’ – is defined by H(x,p, t) ≡ ẋ · p− L and is

H(x,p, t) = mc

[
gαiẋ

αẋi√
−gαβẋαẋβ

+
√
−gαβẋαẋβ

]
(100)

this obeys
dH

dt
= −∂L

∂t
= −1

2mc
gαβ,tẋ

αẋβ√
−gαβẋαẋβ

(101)

so, on dividing by τ̇ =
√
−gαβẋαẋβ/c, and with gαβ,t = cgαβ,0, we have

dH

dτ
= −1

2mcgαβ,0U
αUβ (102)

where the right hand side is −mc times the right hand side of the covariant form of the geodesic equation
dU0/dτ = 1

2gαβ,0U
αUβ, leading us to identify −H/c and mU0.

H ≡ ẋ · p− L = −mcU0. (103)

So the canonical −H/c and p are the time and space parts of the 1-form p̃ = mŨ . And 1-forms also
emerge as gradients of Lorentz-scalar fields. So what Lorentz-scalar function of ~x might (−H/c,p) be the
gradient of? The only Lorentz-scalar we have here is the action S. But, like −H/c and p, it is only defined
along the world-line; it is not actually a field. We can, however, make a field out of the action if we consider a
bundle of particle trajectories emanating from a common starting point. The action then becomes a function
of space and time S(~x), and, as shown by Hamilton and Jacobi, it satisfies H = −∂S/∂t and p = ∇S, so

p̃ = d̃S → ∂µS = (−H/c,p). (104)

The Hamilton is a function of position, time and 3-momentum, but is given above in terms of 3-velocity.
We can obtain an explicit expression for the Hamiltonian as a function of x, t and p from the normalisation
condition Ũ · Ũ = −c2 which implies p̃ · p̃ = gαβpαpβ = −m2c2 or the quadratic equation for p0

g00p2
0 + 2g0ipip0 + gijpipj = −m2c2 (105)

which we can solve to give

H(xi, pi, t)/c = −p0 = ±

√
m2c2 + gijpipj

−g00
+

[(
g0i

−g00

)
pi

]2

− g0i

−g00
pi. (106)
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This can be differentiated to obtain Hamilton’s equations for ṗ and ẋ, but it is easier to use the geodesic
equation, which gives dp/dτ = (dt/dτ)ṗ = c−1U0ṗ and dx/dt = U/U0 and obtain U0 as a function of
momentum using U0 = g0αUα = −g00H/mc+ g0ipi/m

ṗk = − ∂H
∂xk

= −1
2γmc

2
(
g00

,k + 2
pi
mc

g0i
,k +

pipj
m2c2

gij ,k

)
ẋk =

∂H

∂pk
=

1

γ
(gikpi/m− g0kH/mc)

(107)

where
γ(xi, pi, t) ≡ (−g00H/mc2 + g0ipi/mc). (108)

These can be integrated, given some initial position and momentum, to give the trajectory x(t) and p(t).

6.3.2 Classical mechanics of relativistic particles in weak-fields

Writing gαβ = ηαβ + hαβ and defining γ by γ−2 = −ηαβẋαẋβ/c2 so γ(ẋ) = 1/
√

1− |ẋ|2/c2 (and which, to
zeroth order, is γ = 1/τ̇ the differential action is

dS = −γ−1c2dtm
(

1− 1
2hαβU

αUβ
/
c2) (109)

where we have expanded the square root, keeping only terms up to 1st order in the metric perturbation.
So the action is like that in flat space-time, but with a position (and generally also velocity) dependent

‘effective mass’.
meff(~x, ~̇x) =

(
1− 1

2hαβ(~x)UαUβ
/
c2)m (110)

and, for non-relativistic particles, for which ẋα ' (c,0) and γ ' 1, this is just a function of position

meff(~x) =
(
1− 1

2h00(~x)
)
m (111)

and with the Newtonian limit metric, where h00 = −2Φ, this is

meff = (1 + Φ(~x))m. (112)

We will see later that the same is true for a massive scalar field in the appropriate limit.
The Lagrangian is L = dS/dt or

L(x, ẋ, t) = −meffc
2/γ = −γ−1c2m(1− 1

2mhαβU
αUβ/c2) (113)

and the ith component of the canonical spatial momentum is

pi =
∂L

∂ẋi
= γmẋi − 1

2γ
3mhαβẋ

αẋβẋi/c2 + γmhαiẋ
α (114)

which, at zeroth order, is the usual relativistic 3-momentum p = γmẋ. More generally, the 1st two terms are
γmeff ẋ. This is somewhat reminiscent of electrodynamics, where the canonical momentum is p = γmẋ+qA.

The Hamiltonian – or ‘canonical energy’ – is

H ≡ ẋ · p− L = γmc2 − 1
2γ

3mhαβẋ
αẋβ + γmhαiẋ

αẋi (115)

so, as with the canonical momentum, we have the normal zeroth order H = γmc2 but augmented at 1st
order by extra terms that are quite analogous to how, in electrodynamics, we have H = γmc2 + qA0.

Expressed in terms of momenta and position, the Hamiltonian is, at 1st order, and using gαβ = ηαβ−hαβ,
so g00 = −(1 + h00), gij = δij − hij and g0i = −h0i,

H(xi, pi, t) = −cp0 = c

(
−h0ipi +

√
(1− h00)(|p|2 +m2c2 − hijpipj)

)
= c
√
|p|2 +m2c2 − c

2

(|p|2 +m2c2)h00 + hijpipj√
|p|2 +m2c2

− cpih0i

= γpmc
2 − 1

2(γpmc
2h00 + (pipj/γpm)hij)− cpih0i

(116)
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where we have taken the positive square root in order to get a positive energy and, in the last line, we are
defining γp =

√
1 + |p|2/m2c2.

Hamilton’s equations in a general weak-field metric are:

dpk
dt

= − ∂H
∂xk

= 1
2(γpmc

2h00
,k + (pipj/γpm)hij ,k) + cpih

0i
,k

dxk
dt

=
∂H

∂pk
=

pk
γpm

(
1− 1

2h
00 + 1

2

hijpipj
γ2
pm

2c2

)
− pi
γpm

hik − ch0k
(117)

6.3.3 Classical mechanics of relativistic particles in the Newtonian limit metric

Of considerable interest is the case of the Newtonian limit metric, for which hαβ = hαβ = −2Φδαβ, and for
which the H − p relation is

(1− 2Φ)H2 = (1 + 2Φ)|p|2c2 +m2c4. (118)

from which we obtain, at linear order in Φ,

H(p,x, t) =
√
m2c4 + |p|2c2 +

m2c4 + 2|p|2c2√
m2c4 + |p|2c2

Φ(~x) (119)

or
H(p,x, t) = γpmc

2(1 + (2− 1/γ2
p)Φ(~x)) (120)

from which we obtain Hamilton’s equations:

dp

dt
= −∂H

∂x
= −mc2(2γp − 1/γp)∇Φ

dx

dt
=
∂H

∂p
=

p

γpm
(1 + (2 + 1/γ2

p)Φ)
(121)

which we can integrate to obtain the trajectory x(t) and p(t) and hence, from (120) H(t) and therefore
the 4-momentum 1-form p̃(t) → (−H(t)/c,p(t)) for a particle moving in a given weakly perturbed metric
gαβ = ηαβ − 2Φδαβ.

The energy and momentum are the components of p̃ in a particular coordinate system, as, in order to
obtain the Newtonian limit we imposed the Lorenz gauge condition. With a different choice of gauge these
would change. To obtain the physical energy Eobs, for example, we need to ‘dot’ p̃ with the 4-velocity of
the observer doing the measurement. For observers being accelerated so as to maintain constant r, this is
~Uobs → (U0

obs,0) where, at 1st order in the metric, U0
obs = c/

√
−g00 = c(1−Φ), so we obtain Eobs = (1−Φ)H,

or
Eobs = γpmc

2(1 + (1− 1/γ2
p))Φ(~x). (122)

The first of Hamilton’s equation (the one giving dp/dt) is quite revealing. It is purely 1st order. So if we
consider a rapidly moving particle (one for which |p|2/2m� Φc2) we expect only a small deflection from the
‘unperturbed’ path, and, to linear order in Φ we can calculate the change in p by integrating dp/dt while
holding p constant. This is called the ‘Born-approximation’. Taking the particle to be moving along the z-
axis, the rate of change of p with z is dp/dz = (dp/dt)/(dz/dt) while the second of Hamilton’s equations tells
is that, at zeroth order, dz/dt = |p|/γpm, so dp/dz = −(2γ2

p − 1)|p|−1m2c2∇Φ = −(2γ2
p − 1)m2|p|−1∇φ

(since Φ ≡ φ/c2). Thus, in the Born approximation, ∆p =
∫
dz(dp/dz) = −(2γ2

p − 1)m2|p|−1
∫
dz∇φ.

Dividing this by |p|, we obtain the fractional change in the momentum

∆p

|p|
= −

2γ2
p − 1

|p|2/m2

∫
dz∇φ (123)

So for a non-relativistic particle, for which γp ' 1, and |p|/m ' v, this is ∆p/|p| = −(1/v2)
∫
dz∇φ,

while for an ultra-relativistic particle, for which |p|/m ' γpc, we have ∆p/|p| = −(2/c2)
∫
dz∇φ, so the

deflection is twice what the non-relativistic limit formula would predict for a particle moving at v = c.
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6.4 The geodesic equation for massless particles

The proper time τ is ill-defined for a massless particle, as is the 4-velocity ~U = d~x/dτ and therefore also the
geodesic equation dUα/dτ = −ΓαµνU

µUν .

But the 4-momentum ~p = m~U is a well-defined entity. Multiplying the geodesic equation by m2, on the
right hand side we find m2UµUν = pµpν , while the left hand side is m2dUα/dτ = mdpα/dτ = dpα/dλ where
we have introduced, as an alternative to proper time τ as affine parameter for the world-line, λ, defined
such that dλ = dτ/m.

The contravariant geodesic equation is then equivalent to

dpα/dλ = −Γαµνp
µpν (124)

or equivalently, since ~p = m~U = md~x/dτ = d~x/dλ,

d2xα

dλ2
= −Γαµν

dxµ

dλ

dxν

dλ
. (125)

So while τ is not defined for a massless particle, the alternative affine parameterisation in terms of λ = τ/m
works for either massive or massless particles (a massless particle of finite energy E behaving the same as a
massive particle with energy E = γmc2 in the limit of m→ 0 and γ →∞ with γm = E/c2 finite).

What’s more, if we take the photon to be moving along the z coordinate axis with unit 3-momentum:
p = dx/dλ → (0, 0, 1), the affine parameter λ measures coordinate distance z along the path. This is a
convenient choice as we can then use (125) to calculate, for example, the curvature of the path (i.e. the
2nd rate of change of the other coordinates (x, y) with respect to z). And this path is independent of the
momentum of the photon.

Perhaps the main conceptual difference in dealing with massless vs. massive particles is that whereas
for the latter one thinks primarily in terms of their proper time as being the natural parameterisation
of their world-lines, for massless particles this has no utility and it is actually more useful to think in
terms of distance along the path. This may seem strange, as this is coordinate distance dz, rather than
a ‘proper’ quantity. But remember, it’s only for a particle that instantaneously has p → (0, 0, 1) that λ
measures z-distance travelled along the path. More generally, the ‘proper’ quantity is (coordinate) distance
travelled per unit 3-momentum. As both 3-displacement and 3-momentum transform in the same way, this
is frame independent and is a proper quantity. Also, if in doubt about the meaning of the λ as the affine
parameterisation one can always fall back on the definition of dλ as the limit, as m → 0 and γ → ∞ of
dτ/m.

6.5 Light deflection from the geodesic equation for massless particles

As for a massive particle, we can calculate the 1st order equations of motion using the zeroth order momen-
tum on the RHS since the Christoffel symbols are first order.

As usual, it is simpler to use the covariant geodesic equation:

pβpα;β = pβ(pα,β − Γµαβpµ) = 0 (126)

as two of the terms in the connection then cancel by symmetry when contracted with the symmetric com-
bination pβpµ, and we are left, using pβpα,β = dpα/dλ, with

dpα/dλ = 1
2gνβ,αp

βpν . (127)

This is quite general. Specialising to the weak-field metric, we have gνβ,α = hνβ,α, so

dpα/dλ = 1
2hνβ,αp

βpν . (128)

Specialising further to the Newtonian limit – for which hνβ = −2Φδνβ is diagonal – and considering,
without much loss of generality, pα = (1, 0, 0, 1) – i.e. a photon (m = 0) moving instantaneously along the
z = x3 axis – in the momenta on the right hand side, we have

dpα/dλ = 1
2(h00,α + h33,α) = −2Φ,α (129)
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in which we see that both space-space and time-time components of hαβ play a role for massless particles.
Using Φ ≡ φ/c2, and taking α to be the x or y axis, we have the rate of change of the transverse

displacement:

d2r⊥/dλ
2 = −2∇⊥φ/c2 (130)

which, comparing to (72) we see to be twice the Newtonian prediction for a particle moving with v = c.
Equivalently, we can write this as

dn̂/dλ = −2∇⊥φ/c2 (131)

in accord with Snell’s law dn̂/dλ = ∇⊥n for the case that the effective refractive index for a gravitating
system is n = 1 − 2Φ = 1 − 2φ/c2, which in turn is consistent with the fact that the coordinate speed of
light is (1 + 2Φ)× c. It is also consistent with what we found above using Hamilton’s equations.

6.6 Gauge invariance of light deflection

You might well object, at this point, that the geodesic deviation equation is not gauge-invariant. Equation
(130) tells us that the 2nd rate of change of the transverse coordinate is twice the Newtonian prediction
for a particle moving at speed v = c. What’s more, it is apparently in conflict with the prediction based
on the equivalence principle, which seems to be on fairly firm grounds. What’s to say that (130) isn’t a
‘gauge-artefact’ arising from the coordinate system we have adopted. After all, as we have already noted,
the connection components appearing in the geodesic equation are gauge dependent.

In the (contravariant) geodesic equation dpα/dλ = −Γαµνp
µpν , for instance, we find, from the weak field

expression for the connection (21) and the law for transformation of the metric hαβ ⇒ hα′β′ = hαβ − ξα,β −
ξβ,α, that the connection transforms like Γαµν ⇒ Γα

′
µ′ν′ = Γαµν − ξα,µν .

But that’s exactly as it should be, since the transformed 4-momentum is pα
′

= dxα
′
/dλ = d(xα+ξα)/dλ =

pα + pµξα,µ and therefore, on differentiating this (and using the fact that d(pµξα,µ)/dλ = pµd(ξα,µ)/dλ

at first order) dpα
′
/dλ = dpα/dλ + pµpνξα,µν which is the same as the transformed geodesic equation

dpα
′
/dλ = −Γα

′
µ′ν′p

µ′pν
′
, again taking into account that on the right hand side, since the connection is first

order, we can ignore any difference between pµ
′
pν
′

and pµpν .
Thus, with a different choice of gauge, the modified geodesic equation

dpα
′

dλ
=
d2xα

′

dλ2
= −(Γαµν − ξα,µν)

dxµ

dλ

dxν

dλ
(132)

describes the same photon trajectory, just in the different coordinate system xα
′

= xα + ξα.
So there is some ambiguity in e.g. the equation for the rate of change of the transverse displacement of

the path r⊥ (130). This displacement is in a particular coordinate system; that dictated by our choice of
the Lorenz gauge. For some other choice of gauge we would get a different answer.

Lorentz-gauge

trajectory

trajectory for

some other


choice of gauge

⃗p
⃗phαβ ≠ 0 hαβ = 0hαβ = 0

Figure 9: Gauge invariance of light deflection. The geodesic equation provides, for instance, the 2nd rate of
change of the transverse displacement r⊥ as a function of distance along the path (i.e. the curvature of the
light-ray). But this is a coordinate displacement and is therefore gauge dependent. With a different choice
of ‘gauge’ (i.e. coordinates), we will have a different d2r⊥/dλ

2. So the same physical photon trajectory will
appear different when drawn in coordinate-space as above. But provided the change in gauge only applies in
the region where the metric perturbations are non-zero, the integrated change in the transverse momentum
will be entirely independent of whatever choice of gauge we adopt.
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But that should not worry us too much, since what we are probably most interested in is the result of
integrating this equation to get the change of direction of the photon after passing the lens (e.g. the Sun in

the case of Eddington’s expedition – see figure 10). If we integrate (132) to get ∆pα
′

=
∫
dλdp

α′

dλ we get the

Lorenz-gauge result plus
∫
dλξα,µν

dxµ

dλ
dxν

dλ ' p
µ
∫
dxν∂ν(ξα,µ) which is just the difference between pµξα,µ at

the beginning and end points, and is independent of any changes to the coordinate system within the lens
itself.

Figure 10: The Eddington
1919 eclipse expedition. The
deflection of light by the Sun
was measured by comparing
the positions of stars behind
the Sun during the eclipse to
a reference image taken when
the Sun was elsewhere on the
sky. The effect can be anal-
ysed using the geodesic equa-
tion, but that involves ‘gauge-
issues’. An alternative way
to test GR is to measure
the ‘image shear’ of the star-
field. That involves consid-
ering the separation between
neighbouring geodesics to get
the ‘so-called’ geodesic devia-
tion. This can be analysed in
a gauge invariant manner.

Another way to side-step the issue of gauge invariance of the deflection is to use the geodesic deviation
equation to calculate, rather than the deflection itself, the image shear (the gradient of the deflection). As
discussed earlier, this gives the 2nd rate of change of the separation vector ~ξ with respect to affine distance
as an integral involving the Riemann tensor, which, as we saw above, has components that are gauge
independent. Integrating this gives the observable image shear in a manifestly gauge invariant manner.

Regarding the conflict between (130) and the equivalence principle, there is nothing wrong with the latter.
A constant-r observer would measure a local deflection of light perfectly in accord with the equivalence
principle using the acceleration he measures, and in disaccord with (130). So would a freely falling observer
– who would see no local light deflection. So in that sense, the geodesic equation is ‘wrong’ in that it does
not describe what either of those observers sees locally for the deflection measured in physical coordinates
tied to their state of motion. One can say that the factor 2 is a ‘coordinate-artefact’; it is expressing the local
deflection in a different coordinate system to those used by either the constant-r or freely falling observer
and giving a different answer. But the advantage of the geodesic equation is that it allows us to integrate
the effect along the photon trajectory and, as we have seen, gives a gauge-independent result – provided
we don’t try to modify the coordinates in the vicinity of the observer or the source – that can be directly
compared to what was actually observed.

7 Matter waves in weak-field gravity

The dark matter observed in galaxies and galaxy clusters etc. may be the axion – a scalar field whose
excitations have a rest-mass (energy) usually taken to be on the order of mc2 ∼ 10−5eV – or it may be an
ultra-light axion-like field – so called ‘fuzzy dark matter’ – with a mass mc2 ∼ 10−22eV.

So it is of interest to understand how such matter would behave in the potential wells of cosmological
structure; these being well described by the weak-field theory we have developed above.

We can also think of non-scalar particles as being described, via Schrödinger’s equation, in terms of a
quantum mechanical wave function ψ(~x) and it is of interest to understand how this is coupled to weak-field
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gravity also.
Below, we first obtain the equations of motion – the Klein-Gordon equation – for a massive scalar field in

a gravitational field. It is very simple; to a very good approximation the effect of gravity is to give the field
a position dependent mass (actually the Compton wave-number here) m(x) = m× (1+Φ(x)). We then look
at nearly monochromatic waves, which are analogous to beams of particles with well defined momentum
(and the scalar wave is like the wave-function for a particle with well defined momentum and poorly defined
position) and show the relation between the phase of the field and the action S(x) for such beams.

We show how such waves behave in a very similar fashion to EM waves in a cold plasma, and how one
can think of scalar matter being trapped in potential wells much as EM waves are trapped by the ionosphere.

We then show how the Klein-Gordon equation becomes the (classical) Schrödinger equation in the non-
relativistic limit, which is useful as it provides a more efficient way to numerically simulate the behaviour of
wave-like matter. It is also provides a nice way to show that, along with energy and momentum conservation
Tµν,µ = 0, in this limit there is a 5th conserved quantity, with the same units as action, which is conserved,
and this corresponds to conservation of number of particles. It also provides a very nice way to understand
the behaviour of scalar fields in the highly non-linear regime – analogous to what happens with particles
in the ‘multi-streaming’ regions that develop in gravitational collapse – in a manner very similar to the
Kirchoff-Frensel formalism in optics,

We also describe in an appendix the alternative Madelung equation, which is a re-parameterisation of
the complex Schrödinger field ψ into modulus (squared) ρ = |ψ|2 and phase θ = arg(ψ). This also been
applied in simulations. We discuss some peculiarities of this approach.

7.1 The Klein-Gordon equation in weak-field gravity

In flat space-time, the Lagrangian density of a classical massive scalar field φ (not to be confused with the
Newtonian potential) is

L(φ,µ, φ) = −1
2(φ,µφ,µ +m2φ2) (133)

where the ‘mass’ m has units of [L−1] and is the Compton wavenumber for the bosonic particles of mass
M = ~m/c that are the quantum mechanical excitations of this field. The Lagrangian density is a Lorentz
scalar and has units of energy density or [ML−1T−2] so the field has units of [M1/2L1/2T−1]. We take (133)
as the fundamental definition of the scalar field.

Extremising the action S =
∫
dtL =

∫
d4xL(φ,µ, φ) gives the Klein-Gordon equation:

φ,µ,µ = m2φ. (134)

To obtain the action in curved space time, we simply replace the invariant space-time volume element
d4x =

√
−|η|d4x, where |η| = −1 is the determinant of the Minkowski metric, by its equivalent in a general

coordinate system:
√
−|g|d4x, and φ,µ,µ by its equivalent gµνφ,µφ,µ, to obtain

S =

∫
d4x

√
−|g|(−1

2g
µνφ,µφ,µ − 1

2m
2φ2)︸ ︷︷ ︸

L(φ,µ,φ,~x)

(135)

so we see that, since g = g(~x), the Lagrangian density is now a function of position as well as of φ and its
derivatives.

The variation of the action under a variation of the field φ(~x)⇒ φ(~x) + δφ(~x) is

δS =

∫
d4x

[
∂L
∂φ,µ

δφ,µ +
∂L
∂φ

δφ

]
=

∫
d4xδφ

[
∂

∂xµ
∂L
∂φ,µ

+
∂L
∂φ

]
(136)

where we have integrated by parts and discarded a boundary term. Setting [. . .] = 0 in the last expres-
sion gives the equations of motion, which looks, with the more complicated Lagrangian density in (135),
intimidating. But it isn’t really; the equations of motion are local, and we can always express them in a
local inertial frame so the extra derivatives of the metric components vanish, and the determinant factor is√
−|g| = 1, and the EoM is simply (134), and this, in general coordinates, is

φ,µ;µ = m2φ (137)

where we don’t need to modify the first derivative as φ;µ = φ,µ.
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Of course we could have simply invoked the ‘comma becomes semi-colon’ mantra, to obtain (137). The
purpose of the foregoing is to show how this comes about, starting from the fundamental Lagrangian density
(133).

Writing out the covariant derivative in terms of Christoffel symbols, the general form of the Klein-Gordon
equation is

gµν(φ,µν − Γαµνφ,α) = m2φ. (138)

If we specialise to weak-fields gµν = ηµν+hµν ⇒ gµν = ηµν−hµν , and work at linear order, the connection
is Γαµν = 1

2η
αγ(hγµ,ν + hγν,µ − hµν,γ), and we can replace the index raising operator gµν acting on this in

(138) by ηµν , to obtain

gµνΓαµν = 1
2η

µνηαγ(hγµ,ν + hγν,µ − hµν,γ) = ηαγ
(
hγµ

,µ − 1
2h,γ

)
= ηαγ

(
hγµ − 1

2ηγµh
),µ

. (139)

But we recognise the term in brackets as our friend the trace-reversed metric perturbation, hγµ ≡ hγµ−1
2ηγµh,

so gµνΓαµν = ηαγhγµ
,µ

and, if we work in the Lorenz (or de Donder) gauge, this vanishes.
Thus the Lorenz gauge proves useful, not just for simplifying Einstein’s equations, but it also banishes

the connection term from the curved space-time Klein-Gordon equation (138).
So it appears that in this instance, and in the Lorenz gauge, the comma remains a comma and this

might lead one to think that there is no coupling of gravity to a scalar field. But not quite. We still have
the metric perturbation is the first term in (138). With ηµνφ,µν = �φ, the Klein-Gordon equation in weakly
curved space-time becomes

�φ− hµνφ,µν = m2φ (140)

which is a non-covariant equation, but is valid nonetheless, but only in the coordinate system implied by
our choice of gauge.

Using the Newtonian limit metric hµν = −2Φδµν , which implies hµν = −2Φδµν , we get

− (1− 2Φ)φ̈/c2 + (1 + 2Φ)∇2φ = m2φ (141)

or
�φ = m2φ− 2Φφ,µµ (142)

where, in this formally illegitimate and non-covariant equation, we sum over the repeated indices even
though they are both downstairs.

This is quite general, and could be used to describe the propagation of scalar waves of arbitrary momen-
tum (i.e. wave-number). If, however, the field gained its 3-momentum by ‘falling’ into a Newtonian potential
well with Φ(~x)� 1, it’s 3-momentum will be small and we can use φ,µµ ' φ,00 = −m2φ and so we have.

�φ = (1 + 2Φ(~x))m2φ (143)

in which we see that to an excellent approximation the effect of the gravitational field is simply to modulate
the effective mass:

meff(~x) = (1 + Φ(~x))m. (144)

The final result is very pleasing and intuitively reasonable. The KG equation in flat space time admits
solutions corresponding to particles at rest where φ oscillates in time with frequency (c times) m. In curved
space-time the ‘coordinate-frequency’ (i.e. the frequency of oscillation as a function of coordinate time t) is
simply cm× (1 + Φ), so the scalar field oscillations, like those of any good clock, run slow, as compared to
coordinate time, in a potential well.

7.2 The dispersion relation for scalar waves

If the Newtonian gravitational potential10 ϕ = Φc2 in which the matter waves reside is varying on a
sufficiently large length and time scale the Klein-Gordon equation (143) will admit locally monochromatic
solutions where φ(~x) = a cos(kux

µ + Ψ0) where a is the amplitude and the constant Ψ0 is the phase. This
can also be expressed as

φ(~x) = φ0e
ikuxµ (145)

10We will use ϕ for the Newtonian potential in this section as φ denotes here the scalar field.
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with complex amplitude φ0 = aeiΨ0 that encodes both the phase and the amplitude, the above being
shorthand for

φ(~x) = 1
2(φ0e

ikuxµ + c.c.). (146)

With this trial solution (with k̃ → kα = (−ωk/c,k)), and considering Φ to be (locally) constant, the
Klein-Gordon equation becomes the dispersion relation linking frequency and wave-number:

(1− 2Φ)ω2
k = c2(m2 + (1 + 2Φ)|k|2) (147)

which, multiplied by ~2 and using the fact that m is the compton wave-number, m = Mc/~, gives

(1− 2Φ)H2 = M2c4 + (1 + 2Φ)|p|2c2 (148)

(with H = ~ω and p = ~k) which is the same as (118) the relativistic energy-momentum relation for a
particle with mass M in the Newtonian limit metric.

Alternatively, if we write
φ(~x) = φ0e

iΨ(~x) (149)

which is equivalent to the above if we expand the phase as Ψ(~x) = Ψ0 + Ψ,µx
µ+ . . .. The dispersion relation

– or energy-momentum relation – relates the components of the phase-derivative 1-form d̃Ψ → Ψ,µ, and is
then

(1− 2Φ)(−∂Ψ/∂t)2 = c2(m2 + (1 + 2Φ)(∇Ψ)2) (150)

which we see is equivalent to the Hamilton-Jacobi equation for a beam of relativistic particles emanating
from a common starting point with classical action S(~x) = ~Ψ(~x) and with d̃S → ∂µS = (−H/c,p) = ~kµ.

This is all very reminiscent of the Dirac-Feynman picture where the wave-function ψ for a particle
that would have a classical action S is locally proportional to exp(iS/~). But the field φ(~x) here is to be
thought of as purely classical, and ~ appears here simply as a parameter as we have chosen to express the
mass M of the field in terms of the Compton wave-number m = Mc/~ and in no way indicates anything
quantum-mechanical. The field should of course be treated quantum mechanically and there would then be
a wave-function, but it wouldn’t be a function of position like φ(~x), rather is would be a functional of φ(~x).
The Klein-Gordon equation would then emerge as the equation of motion satisfied by the expectation value
of φ(~x).

There is a very close correspondence between a planar scalar wave and a collimated beam of particles.
One can readily calculate the stress tensor for such waves (see below). The components of this have temporal
and spatial fluctuations, but if one averages over these, the waves have energy flux-density and momentum
density and momentum flux density just like a beam of particles. And, as we will show presently, wave-
packets and beams of scalar waves are deflected by a gravitational field much as are particles.

This wave-particle correspondence leads one to expect that, for waves that have gained their momentum
falling into a weak-field potential with Φ(~x) � 1 the wave-number k will be on the order of the inverse
of the de Broglie wavelength for a particle of mass M in a Newtonian potential ϕ = c2Φ. I.e. |k| ∼ |p|/~
with |p|2/M ∼ Mϕ so |k| ∼ M

√
ϕ/~ or |k| ∼ m

√
Φ � m. Under that assumption we can ignore the term

involving the product of Φ and |k|2 and the dispersion relation becomes:

ω2
k = c2((1 + 2Φ)m2 + |k|2). (151)

7.3 The wave- and group-velocities for scalar waves

The speed with which the wave-crests travel is called the ‘phase-velocity’ and is

vp = ωk/|k| = c
√

1 + (1 + 2Φ)m2/|k|2 ' cm/|k| � c (152)

where we have assumed |k| � m which is valid in the non-relativistic regime.
The speed with which the groups of waves or wave-packets – or ‘beats’ in a wave-train constructed from

a superposition of 2 waves of slightly different frequencies – travel is called the ‘group-velocity’ and is

vg = dωk/d|k| = c/
√

1 + (1 + 2Φ)m2/|k|2 ' c|k|/m� c (153)

This is also the speed at which information can be propagated. As m is the Compton wave-number:
m = Mc/~, vg ' ~|k|/M which is the speed of a particle of mass M with momentum p = ~k.
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7.4 The stress-energy tensor for scalar waves

The stress-energy tensor for a relativistic scalar field is

Tµν = φ,µφ,ν + ηµνL = φ,µφ,ν − 1
2ηµν(φ,γφ

,γ +m2φ2) (154)

or

Tµν =

[
1
2(φ̇2/c2 + |∇φ|2 +m2φ2) 1

c φ̇∇φ
1
c φ̇∇φ ∇φ∇φ+ 1

2(φ̇2/c2 − |∇φ|2 −m2φ2)I

]
(155)

where I is the 3 × 3 unit matrix. This is valid in flat space-time or in a locally inertial frame (as only 1st
derivatives appear).

For a plane wave φ all of the components of T contain fluctuating parts. But if we average over these,
we have

Tµν = 〈φ2〉
[
ω2/c2 −ωk/c
−ωk/c kk

]
= kµkν〈φ2〉 (156)

since ~k → (−ω/c,k).
In the non-relativistic limit, the dispersion relation ω2 = c2(m2 + |k|2) says ω ' mc so, raising the indices

(which changes the sign of the off-diagonal components)

Tµν = 〈φ2〉
[
m2 mk
mk kk

]
(157)

so the energy density is E = T 00 = m2〈φ2〉, corresponding to a mass density ρ = E/c2 = m2〈φ2〉/c2, and the
components of the momentum density are πi = T 0i/c = mki〈φ2〉/c, so π = (ck/m)ρ = ρvg, i.e. precisely as
for a beam of particles of density ρ moving with a velocity equal to the group velocity vg = ck/m.

7.5 The analogy with EM waves in a plasma

The dispersion relation for non-relativistic scalar waves in a gravitational potential (151) is identical to that
for EM waves in a cold plasma

ω2 = ω2
p + c2|k|2 (158)

with (1 + Φ)mc playing the role of the plasma frequency ωp. The physics of this is illustrated in the left-
hand panel of figure 11. The density of electrons defines a frequency ωp which is the frequency that the
plasma would ‘ring’ at if the electrons in some region were displaced (the resulting charge imbalance creating
a restoring force). Maxwell’s equations – here in integral form – show that travelling wave solutions are
only allowed at frequencies above ωp. Here the analogous frequency ω = cm(1 + Φ) arises for completely
different reasons, but, as for EM waves in an inhomogeneous plasma, it varies with position and this results
in interesting refractive effects on the propagation of waves.

If we turn the dispersion relation around and use it to determine the wave-number k for a wave of a
specified frequency ω we get |k|2 = (ω2−ω2

p)/c2. This has real solutions – corresponding to travelling waves
– only for ω > ωp. For ω < ωp, the wave-number k is imaginary and any fluctuations of the field at these
frequencies are evanescent.

As one enters the ionosphere, the density of electrons rises at first and then decreases, so the plasma
frequency ωp =

√
nq2/ε0me has a maximum, which, it turns out, is at νp = ωp/2π ' 30MHz.

Terrestrial EM waves of frequency less than this get trapped and reflected as illustrated in figure 11. For
a given temporal frequency, the spatial frequency decreases with altitude, so the wavelength increases, and
it is this stretching of the wavelengths with height that causes the refraction of such waves11. This is how
‘short-wave’ radio transmissions can be detected around the world.

If the dark matter is the axion or an ultra-light axion-like field then it is trapped in the gravitational
potential wells of galaxies and clusters etc. in much the same manner. The situation is somewhat different
from short-wave radio waves in that whereas in the ionosphere the plasma frequency increases from zero to
its maximum value and then drops again, in the galaxy the effective plasma frequency is everywhere very
nearly constant, being equal to cm at infinity and with only a small suppression within bound systems (of
at most about 1 part in 105 – this being in clusters of galaxies). So the situation we have is that, within a
cluster, we have waves just above the local plasma frequency but just below its asymptotic value at infinity.

11Note that, for such waves, the group velocity decreases with altitude. What matters for refraction is the phase-velocity,
which increases with altitude, and one can think of the (wave-crests in the) upper part of of a beam from a transmitter as
out-running those in the lower parts and thus causing the beam to turn.
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Waves in cold plasma: 

•  as before 

• electrons feel acceleration 

•  

• so current is

 

• and  

• where plasma frequency is  

• and dispersion relation is now 

•     just like massive 

E = x̂E0 cos(ωt − kz)
B = ŷB0 cos(ωt − kz)

··x = qE0
m

cos → ·x = qE0
mω

sin

j = nq ·x = nq2E0
mω

x̂ sin = − nq2

mω2
·E

·E + j/ϵ0 = (1 − ω2
p /ω2) ·E

ω2
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ω2 = c2k2 + ω2
p ϕ
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L

dz
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B B + dB
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j

Reflection of radio waves from the ionosphere

• the electron density increases with altitude entering the 
ionosphere — so the plasma frequency  
also rises 

• This reflects radio waves with  

• scalar field dark matter like the axion or fuzzy DM is 
similarly trapped in galactic and other potential wells

ω = nq2/ϵ0me

ν < 30MHz

Figure 11: Scalar matter waves are trapped in a gravitational potential well much as EM waves get trapped
by the ionosphere.

7.6 Focussing of scalar matter waves

We have seen that, as far as the phase of matter waves is concerned one can always find solutions – in
potential with sufficiently slow spatial variation – that correspond to a beam of particles with action S(~x)
by setting the phase to be S/~. What about the amplitude of such waves?

If we have a beam of matter waves – analogous to a beam of particles – in empty space that encounters
a potential well this will cause focussing of the beam.

But the beam satisfies the conservation laws Tµν,µ = 0 and, in particular, Tµ0
,µ = 0. This says that the

rate of change of the energy density E = T 00 (proportional to 〈φ2〉) with respect to coordinate time x0 = ct
is minus the 3-divergence of a vector field S:

Ė = −∇ · S (159)

where the energy flux density S has components Si = cT i0.
But recall that the momentum density – denoted here by π – has components πi = T i0/c and is given,

for a non-relativistic beam, to π = ρv where ρ = E/c2 and v = ck/m, which is the group velocity. So the
above equation says that

ρ̇ = −∇ · π = −∇ · (ρv). (160)

But this is the same as the continuity equation for particles in a fluid of density ρ and with velocity field
v. So the equivalent mass mass density ρ = (m2/c2)〈φ2〉 changes in the focussing beam in exactly the same
manner as would the density of particles with that density and velocity.

This can also be understood from the equation of motion – the Klein-Gordon equation – which links
changes of amplitude and phase. If we apply �φ = m2φ to a trial solution φ(~x) = A(~x)eiΨ(~x) we obtain

A(i�Ψ−Ψ,µΨ,µ) + 2iA,µΨ,µ +�A = m2A. (161)

We see from this that a phase Ψ = Ψ0 +Ψ,µx
µ is compatible with wave-like solution with constant amplitude

A, provided Ψ,µΨ,µ = −m2 or, equivalently ω2 = c2(|k|2 +m2) where Ψ,µ = (−ω/c,k). On a hyper-surface
of constant t, this phase is Ψ(x) = constant+x·k. If we add to this some small, and smoothly varying, ‘phase
error’ δΨ(x) – which will, in general, have some non-vanishing �δΨ = ∇2δΨ – this will be compatible with
a slowly varying amplitude A = A(t) provides the 3rd term above compensates for the first. I.e. provided

2ωȦ+Ac2∇2δΨ = 0 (162)

or

d lnA2/dt = −c
2

ω
∇2δΨ = −∇ · v (163)

using ∇2δΨ = ∇ ·∇k (since ∇k = ∇δΨ) and v = ck/m = c2k/ω (since ω ' m for non-relativistic waves).
Thus again we see that, if a wave passes through some inhomogeneous potential that imposes a phase-error
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δΨ – and hence a divergence (or convergence) of the wave-vector k (and hence velocity) then the squared
amplitude of the wave ‘downstream’ will change in just the same way as would the density of particles being
focussed or defocussed.

This is all assuming waves that are locally nearly monochromatic and that the scale of variation of the
potential is sufficiently slow. What we are seeing here is directly analogous to the ‘geometric optics’ limit
in electromagnetism, where, if we are dealing with light of sufficiently short wavelength, it behaves like
particles with energy density changing just as the density of particles would change.

7.7 The Fresnel scale for matter waves

Just as in optics, there is a length-scale analogous to the ‘Fresnel-scale’ rF ∼
√
Lλ where, in optics, L is the

distance from the ‘scattering plane’ and λ is the wavelength of light. According to Fresnel-Kirchoff theory,
the field on the observer plane – the focal plane in an optical system perhaps – is a convolution of the field
on the scattering plane with the Fresnel function. The picture here is that there are ‘Fresnel wavelets’ on the
scattering plane that irradiate the observer. These interfere with phases given by the optical path length,
and only for particular places on the scattering plane will this be constructive. The result is that the field
at a point on the observer plane is sensitive only to a patch on the scattering plane of size of order rF as
only the ‘Fresnel wavelets’ from this region interfere constructively. And if the scale of lenses etc. that are
‘scattering’ the light is larger than the Fresnel scale then geometric optics provides a good approximation.

Similarly, for scalar waves, we might consider a volume of linear size R centred on the origin r = 0 in
which there is a wave corresponding to zero 3-momentum particles, but outside of which the field vanishes.
I.e. a 3-dimensional wave-packet in which φ ' cos(mct). The finite size of the wave-packet means that it is
made of waves that actually have a range of momenta ∆k ∼ 1/R. The group velocity of the mean momentum
k = 0 is zero, but the components for which the amplitude is significant will have vg ∼ c∆k/m, so after a
time t the packet will have spread by an amount ∆R(t) ∼ vgt ∼ ct/mR. Solving for the size of the packet
that will have spread by its own width in this time – i.e. for which ∆R = R – gives R ∼

√
ct/m ∼

√
ctλC

where λC = 2πc/m is the Compton wavelength.
It follows that, for an infinite zero 3-momentum wave, the field at r = 0 is only sensitive to the initial

field within a volume around the origin of linear size ∼ rF ≡
√
ctλC (since we would truncate the field

outside of this volume at the initial time without affecting the final field at r = 0).
In a self-gravitating object of sizeRobj with velocity dispersion v ∼

√
GM/Robj the dynamical (or orbital)

time is tdyn ∼ R/v and the Fresnel scale after N dynamical times is rF ∼
√
NRλdB where λdB = (c/v)λC

is the. de Broglie scale. The Fresnel scale, in units of the size of the object, is therefore rF/Robj ∼√
NλdB/Robj.
The smallest mass deemed feasible for ‘fuzzy’ DM has, in the Milky-Way, a de Broglie wavelength

λdB ∼ 200pc ∼ Robj/500 taking Robj ∼ 100kpc. So over one dynamical time, the Fresnel scale is much
smaller than Robj and geometric optics should be a very good approximation. The dynamical time, however,
is about tdyn ∼ Robj/v ∼ 3 × 1015sec, as compared to the age of the universe tU ' 1/H0 ' 4 × 1017sec or
about N ∼ 100 dynamical times. If we track a geodesic path back to turnaround – at which time the galaxy
was perhaps a factor 2 times larger than it’s present time – this suggests that the Fresnel scale was smaller
than the size of the object, but not by an enormous factor.

This allows us to make more precise what is implied by ‘sufficiently slow’ above. If we have scalar matter
waves propagating in a gravitating system – a galaxy or galaxy cluster perhaps – with size R, then geometric
optics will be a good approximation if R� rF.

7.8 Speckly nature of scalar DM in the multi-streaming regime

If we have a potential well – that of a spherical mass concentration say – and we have test particles released
from rest then they will fall into the potential. A scalar wave that starts off spatially homogeneous –
corresponding to zero momentum particles – will, initially, start to fall in exactly the same way. One can
see that the wave will oscillate at a lower frequency (as a function of coordinate time, that is) deeper into
the potential. Different parts of the wave will get out of phase with each other. So the initially spatially
homogeneous field will develop ripples. Unsurprisingly these give the field a momentum density and, guess
what, it is just that that the corresponding beam of particles would develop.

But the particles will, eventually, reach the centre of the potential, and they will meet up with particles
that are coming the other way. We say that a ‘multi-streaming’ region has developed. What happens to the
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waves in the same analogous situation?

x

ct

S = constant

Figure 12: Space-time diagram of trajec-
tories of particles (thin lines) that are fo-
cussing shows that, in general, caustics will
form. These bound the multi-streaming re-
gion. Note that the density ρ of trajecto-
ries becomes very large close to the caus-
tics; one can easily show that the density
is singular and falls off inversely as the
square root of the distance from the caustic
for these so-called ‘fold-catastrophes’. The
heavy curves show hypersurfaces of con-
stant action S for these particles. These are
orthogonal to the trajectories of the par-
ticles in the special relativistic sense. A
classical scalar field φ ∝ √ρ cos(S(~x)/~)
solves, in the geometric optics limit, the
Klein-Gordon equation. So wave-fronts (or
nodes) of the field are surfaces of constant
action. Outside the caustics, there is, lo-
cally, a single beam. Inside, in the multi-
streaming region, we have a superposition
of multiple beams (three here). These
beams will interfere wave-mechanically and
the density will show interference patterns.
If we have many overlapping beams the en-
ergy density will be ‘speckly’.

The answer is that there will be interference. At any point in the multi-streaming region, if we were to
make a Fourier transform of the field within some region (much bigger than the wavelength of the waves,
lets say) then we will see spikes at the frequencies of the different overlapping streams – indeed, one can
show that the power spectrum obtained by squaring this corresponds to the phase-space density of the
corresponding particles. This is illustrated in figure 13 which shows the result of a numerical simulation of
structure formation in a universe dominated by so-called ‘fuzzy’ dark matter (a classical scalar field with
Compton wavelength of order a fraction of a parsec).

7.9 Evolution of classical scalar fields via the Schrödinger equation

The Klein-Gordon equation was proposed by Schrödinger to describe ψ, the quantum mechanical wave
function of a particle. He obtained it by replacing H and p in the relativistic energy-momentum relation
by the operators i~∂t and −i~∇. In response to the problem that the probability density ρ = ψψ? is not
generally conserved he dropped this in favour of what we usually call the Schrödinger equation, which is
obtained by taking the non-relativistic limit. Here the KG equation is considered as that obeyed by a classical
scalar field φ but, if we are considering such a field as the dark matter, we can similarly use the Schrödinger
equation. This is useful in numerical simulation as the Schrödinger field evolves less rapidly than the scalar
field. It is also useful conceptually as it shows that, in this limit, the field has, in addition to the 4-conserved
quantities

∫
d3rT 0µ (the total energy and 3-momentum), a 5th conserved quantity that corresponds to

particle number. It is also useful as it makes it somewhat simpler to understand phenomenology such as
the speckly nature of the DM in the multi-streaming regime.

7.9.1 From Klein-Gordon equation to the Schrödinger equation

The KG equation in flat space-time is �φ = m2φ which, for slowly spatially varying fields becomes φ̈ =
−c2m2φ with solutions φ ∝ Re eiµt = cos(µt) where µ = mc is the Compton (angular) frequency.
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Ultra-light axion-like DM
Figure 13: Result of a numerical simula-
tion that evolves a classical scalar field in
the gravitational potential that is the solu-
tion of Poisson’s equation sourced by the
effective mass density ρ = m2〈φ2〉/c2 of
the scalar field. In fact, these results were
obtained by solving the Schrödinger equa-
tion, and using ψψ? for the density. In
the low density regions (blue) one can see
the interference of 3-waves in what would
be, for particles, the 3-stream region. The
denser regions (orange) are where, for par-
ticles, there would be many overlapping
streams of particles so we have interfer-
ence of multiple ‘beams’ and this is what
gives rise to the characteristic speckly pat-
tern.

To obtain the Schrödinger equation from the KG equation we simply ‘factor out’ the rapidly oscillating
factor eiµt and set

φ(r, t) = ψ(r, t)e−iµt + ψ?(r, t)eiµt (164)

where ψ(r, t) is a slowly varying field. By construction φ is real. Taking the time derivative of the field gives

φ̇ = −iµψe−iµt + iµψ?eiµt + ψ̇e−iµt + ψ̇?eiµt (165)

where the first two terms here are much larger than the last two. Taking a further time derivative yields

φ̈ = −µ2(ψe−iµt + ψ?eiµt)− 2iµ(ψ̇e−iµt − ψ̇?eiµt) +O(ψ̈eiµt). (166)

The Laplacian of the field is
∇2φ = ∇2ψe−iµt +∇2ψ?eiµt (167)

and combining these in the KG equation �φ = m2φ or φ̈ − c2∇2φ + µ2φ = 0, and dropping the term in φ̈
involving ψ̈ gives

2iµ(ψ̇eiµt − ψ̇?e−iµt) + c2∇2ψeiµt − c2∇2ψ?e−iµt = 0. (168)

Since ψ is supposed to be relatively slowly varying compared to eiµt this requires that both the coefficient
of eiµt and of e−iµt must vanish, which means that 2iµψ̇ = −c2∇2ψ or

iψ̇ = − c

2m
∇2ψ (169)

which is just the Schrödinger equation for a free particle of mass M = ~m/c.
In a Newtonian gravitational potential ϕ, the Klein-Gordon equation becomes �φ = (1 + 2Φ)m2φ

with Φ = ϕ/c2 or φ̈ − c2∇2φ + (1 + 2Φ)µ2φ = 0 and, again ignoring the term involving ψ̈, this requires
2iµψ̇ = −c2∇2ψ + 2µ2Φψ or equivalently

i~ψ̇ =
1

2M
| − i~∇|2ψ + V ψ (170)

where V = mϕ is the gravitational potential energy of a particle and we recognise this as the operator
equivalent of Hψ = (|p|2/2M + V )ψ.

It may seem strange that we have been able to replace the KG equation, which is second order in time,
and therefore requires that one specify both φ and φ̇ as initial conditions to obtain a solution, by one that is
first order in time, and therefore only requires that one specify the initial field ψ. But this is quite reasonable
when we count degrees of freedom since ψ has both a real and imaginary part. Also, one may note that
our starting point (164) does not allow one to determine ψ given the initial field φ alone, but, if augmented
by φ̇ = −iµψe−iµt + iµψ?eiµt, which we obtain by taking the dominant terms in (165), we have, at t = 0,
ψ = (φ− φ̇/iµ)/2.
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7.9.2 The 5th conservation law: conservation of particle number

A scalar field obeys, in general, 4 conservation laws (or continuity equations); those of energy and the 3
components of spatial momentum. But, for non relativistic particles – where the energy of the particles
is too small to create new particles in collisions – there is a 5th conservation law; that of the number of
particles.

The corresponding law for a non-relativistic field is the law of conservation of total probability (if we
think of ψ as a wave-function whose squared modulus gives the probability to find the particle). This is

ρ̇+ ∇ · j = 0 (171)

where

ρ = ψψ?

j =
ic

2m
(ψ?∇ψ − ψ∇ψ?)

(172)

the latter being the usual Schrödinger 3-current density.

7.9.3 Speckles and phase vortices from the Schrödinger perspective

The Schrödinger formalism gives an interesting perspective on the structure of the density field as illustrated
in figure 14 and described in the caption.

Figure 14: In the strongly multi-streaming regime
the Schrödinger field will be the sum of many in-
dependent ‘beams’ coming from various directions.
The real and imaginary parts of ψ will then behave –
by virtue of the central limit – as Gaussian random
fields. The coherence length of these randomly fluc-
tuating field is on the order of the de Broglie wave-
length. The real part Reψ will vanish on one set
of 2-dimensional surfaces and Imψ vanishes on an-
other. In the single stream region these are inter-
leaved so the density ρ = |ψ|2 can never vanish. But
in a multi-stream region, Reψ and Imψ become ef-
fectively statistically independent, and the surfaces
will cross, which means that ρ will vanish on a set of
lines. This is illustrated at left, where the colour im-
age is the density ρ = |ψ|2 on a 2-dimensional slice,
and the lines are contours of zero Reψ and Imψ.

It is not difficult to show that, if we write the field as ψ =
√
ρeiθ, the phase θ will wrap by 2π if one

follows a loop around one of the lines where ρ vanishes; these lines are ‘phase-vortices’ .
One can also show that the Schrödinger current is proportional to ρ times the gradient of θ. That means

that if we define the velocity as v = j/ρ, this is divergent; tending to infinity inversely with distance from
the ρ = 0 line.

A Curvature of t = constant surfaces for a uniform density sphere

• We consider again the uniform density sphere

– this could be a useful approximation for observers in the centre of a dark-matter dominated
galaxy or cluster

• the potential is then Φ(r) = Φ0 + (2/3)πGρr2/c2 where Φ0 ≡ φ(r = 0)
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• consider the equatorial plane z = 0

• and define polar coordinates r =
√
x2 + y2 and θ = tan−1 y/x

• in terms of which dx2 + dy2 = dr2 + r2dθ2

• the proper circumference of a disk with boundary
√
x2 + y2 = r is

– lθ =
∫

(ds/dθ)dθ =
∫
dθ
√
r2(1− 2φ(r)) ' 2πr(1− φ(r)) = 2πr(1− φ0 − (2/3)πρr2)

– where we have used
√

1− 2φ→ 1− φ as we are working to first order precision in φ

• while the proper radius is

– lr =
∫
dr(ds/dr) =

∫
dr
√

1− 2φ(r) =
∫
dr(1− φ0 − (2/3)πGρr2) = r(1− φ0 − (2/9)πGρr2)

• so the ratio of the circumference to the radius is, keeping only terms linear in φ,

– lθ/lr = 2π(1− (4/9)πGρr2/c2)

– lθ/lr < 2π so evidently these 2D spatial surfaces are positively curved

– the same being true for the 3D hyper-surfaces of constant t – as one can infer from a similar
calculation of the volume contained within some coordinate and of the surface area bounding
that volume

– this is something our observers would appreciate in constructing the lattice that supports them
– they would have to adjust the length of the rods to accommodate the curved spatial geometry

B The Madelung equation for scalar fields

From Schroedinger to Madelung
• In 1927 Madelung came up with a re-formulation of Schroedinger’s 

equation which looks like fluid mechanics 

• Instead of working with  we set . This gives two equations: 

•  - continuity of mass density and Euler: 

•  

•
where  is the “quantum pressure” (or the Bohm quantum 

potential) 

• The velocity here , where  is the 
momentum density, from which  

• But that means  has no vorticity  (or circulation) 

• Whereas particles develop vorticity after shell-crossing

ψ ψ = ρe−θ

∂tρ + ∇ ⋅ (ρv)
dv
dt

= ∂tv + v ⋅ ∇v = − ∇VN − ∇Q

Q ≡ 1
2

∇2 ρ

ρ

v = j/ρ j = (ψ∇ψ⋆ − ψ⋆ ∇ψ)/2i
v = − ∇θ

v ω = ∇ × v

Figure 15: An alternative approach in the non-relativistic regime is to use the Madelung equation.
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C Problems

C.1 Problem: self-focusing of a beam of light

Q: Consider a flash-light in the lab emitting a cylindrical beam of light with uniform energy density. Write
down the stress tensor and solve for the weak-field metric in the Lorenz gauge. Use this to calculate the
geodesic focussing of a set of (transparent) test particles within the beam lying on a circle perpendicular to
the beam. Consider two cases: a) where the ring of test particles is initially at rest in the lab-frame and
b) where the ring is moving at some velocity v along the beam axis. Compute 2nd derivative of the radius
with respect to coordinate time t and relate this to the 2nd derivative with respect to proper time. What
does this imply for the rate of self-focusing of the beam? Interpret the result physically (hint: think of
the beam as composed of highly relativistic massive particles, rather than massless photons and relate the
energy density in the frame of the beam to the lab-frame energy density.) Consider the case of two identical
overlapping beams propagating in opposite directions. Do these beams focus one another?
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