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1 Introduction

The route we have taken in developing GR followed that charted by Einstein. We assert that gravitational
phenomena are the influence of curvature of the space-time manifold. Requiring agreement with Newtonian
theory we are led – aside from possible ambiguities associate with the cosmological constant – to a unique
rank-two contraction G of the curvature tensor that is ‘sourced’ by the matter stress-tensor T.

A radically different way of thinking about the field equations is that they are the ‘Euler-Lagrange’
equations that emerge from the requirement that the Einstein-Hilbert action

S =

∫
d4x
√
g

(
R

16πκ
+ Lm

)
(1)

where R is the Ricci scalar – a function of the metric g and its derivatives – and where Lm is the Lorentz
scalar Lagrangian density for the matter fields, denoted loosely by φ(~x), be extremised with respect to
variation of the metric.

So just as the usual action principle states that, given some space-time g, the matter field configurations
φ(~x) that actually occur in nature are those that extremise the action for the matter, the gravitational action
principle states that the space-times that actually occur in nature are those that extremise the complete
action given above.

As well as being profound, this is practically useful for two reasons. One is that it is a good starting
point for thinking about possible modifications to Einstein’s gravity (beyond just adding a cosmological
term Λg to G). The other is that this leads to a stress-energy tensor Tµν for the matter that is guaranteed
to be symmetric, whereas, as we saw earlier, in electromagnetism for instance, this was not the case.

We will now confirm that this does indeed lead to Einstein’s equations. To do this we will first show in
§3 that the variation of the part of the action involving the gravitational field is

δSg ≡ δ
∫
d4x
√
g

R

16πκ
= − 1

16πκ

∫
d4x
√
gGµνδgµν (2)

where Gµν is the Einstein tensor.
Then, in §4, we will show that

δ(
√
gLm) = 1

2

√
gTµνδgµν (3)

so the stress energy tensor T can be considered to be the functional derivative of the matter Lagrangian
density with respect to the metric. Together, these establish that G = 8πκT are indeed the Euler-Lagrange
equations that emerge from δS = 0.
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First, however, we will remind ourselves how the energy and momentum conservation laws ~∇·T = 0 follow
via Noether’s theorem from invariance of the matter Lagrangian density Lm with respect to translations in
(flat) space-time.

2 The stress-energy tensor for the matter in flat space-time

2.1 The Noether currents for matter fields in flat space-time

Let us assume that there is some Lagrangian density for the ‘matter fields’ – matter being defined loosely
here as it may contain massless radiation – that is the function of the fields and their derivatives and,
perhaps, position:

L(φ, φ,α, ~x) (4)

where we have written the field as a scalar quantity, but it is really shorthand here for a collection of fields
that will also in general contain things like the electromagnetic field Aµ.

If we assume that this is Lorentz invariant – so we allow products of different fields to give interactions1

provided they are also Lorentz scalars – we get a Lorentz invariant action – space-time volume element d4x
being Lorentz invariant –

S =

∫
d4xL(φ, φ,α, ~x). (5)

The equations of motion are obtained by requiring that the action be stationary with respect to variations
of the fields, so δS =

∫
d4xδL = 0. The variation of the Lagrangian density is

δL =
∂L
∂φ,ν

δφ,ν +
∂L
∂φ

δφ

=

(
∂L
∂φ,ν

δφ

)
,ν

+ δφ

[
−
(
∂L
∂φ,ν

)
,ν

+
∂L
∂φ

] (6)

where we have used ∂νδφ = δφ,ν and have ‘differentiated by parts’ to eliminate δφ,ν . It is still there, of
course, hidden in the first term. But this is a total derivative, so it does not contribute to δS if, as usual,
we demand that the field be fixed on the boundary (or if we assume that the fields tend to zero at infinite,
or if we assume there is no boundary – as in a closed universe).

For δS to vanish for an arbitrary δφ requires that the quantity [. . .] above vanish, which gives the
Euler-Lagrange equations – there being one for each field, or field component –

∂

∂xν
∂L
∂φ,ν

=
∂L
∂φ

. (7)

If we write L(~x) = L(φ(~x), φ,α(~x), ~x) for some actual solution of the field equations, and take its partial
derivative with respect the µth components of ~x, keeping the others fixed, we have

∂µL(~x) =
∂L
∂φ

φ,µ +
∂L
∂φ,ν

φ,νµ︸ ︷︷ ︸
∂ν(φ,µ∂L/∂φ,ν)

+∂µL (8)

where we have invoked the equations of motion to eliminate ∂L/∂φ and where L on the right hand side is
being considered to be L(φ, φ,α, ~x).

Writing the left hand side as ∂µL = δνµ∂νL, and raising the index µ, gives

T νµ,ν = ∂µL(φ, φ,α, ~x) (9)

where the stress-energy tensor is

T νµ ≡ −φ,µ ∂L
∂φ,ν

+ ηνµL. (10)

1In electromagnetism this is done by replacing the ordinary operator ∂µ by the gauge-covariant derivative Dµ ≡ ∂µ+(q/~)Aµ.
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If the Lagrangian density has no explicit dependence on the space-time coordinates – i.e. L(φ, φ,α, ~x) =
L(φ, φ,α) – then the right hand side of (9) vanishes and we have four continuity equations (one for each of
µ = 0, 1, 2, 3 and expressing continuity of energy and the three components of momentum)

T νµ,ν = 0 (11)

or, if you prefer,

~∇ ·T = 0 . (12)

We say that the symmetry of the Lagrangian density L with respect to translations in each if the 4-dimensions
of space-time has given rise to 4 conserved ‘Noether currents’; the spatial components of these being T iµ,
whose spatial divergence T iµ,i gives the rate of change of the corresponding density T 0µ. Integrating the
continuity equations over space gives the laws of conservation total energy and momentum∫

d3xT νµ,ν =
d

dx0

∫
d3xT 0µ = 0. (13)

One thing to note about the definition (10) is that it is not, in general, symmetric. We saw this in the
case of electromagnetism, for which L = (16πµ0)−1FµνFνµ with Fµν ≡ Aµ,ν −Aν,µ the Faraday tensor. But
we saw there that this could be converted into a symmetric – and gauge invariant – form by adding a term
with vanishing 4-divergence. So there is, in general, some ambiguity about the stress-energy tensor.

2.2 Example: the relativistic scalar field

Let us consider, as an example of a matter field, a relativistic classical scalar field (for example the Higgs
field or the axion), whose Lagrangian density in flat space, we may recall, is the Lorentz-scalar density

L(φ, φ,µ) = −1
2φ,µφ

,µ − 1
2m

2φ2. (14)

To remind ourselves of the physical meaning of the various terms encapsulated in this elegantly covari-
ant equation, note that in 3+1 form, and letting dot denote derivative with respect to x0 = ct, this
is L(φ, φ̇,∇φ) = 1

2(φ̇2 − |∇φ|2 − m2φ2). The space-integral of this is mathematically equivalent to the
Lagrangian of a lattice of particles confined to their lattice locations with springs with potential energy
Um =

∑
im

2φ2
i /2 ⇒

∫
d3xm2φ2/2 (so m2 is the spring constant) and with connecting springs giving

an additional potential U∆ =
∑

i ∆φ2
i /2 =

∑
i(φi+1 − φi)

2/2 ⇒
∫
d3x |∇φ|2/2. With kinetic energy

K =
∑

i φ̇
2
im/2 ⇒

∫
d3x φ̇2/2 the Lagrangian for this ‘scalar-elasticity’ model is L = K − (Um + U∆) =

K − U =
∫
d3xL with L as given above.

Requiring that the variation of the action with respect to a variation of the field δφ(~x) vanish gives the
equation of motion for the field – or the Euler-Lagrange equation – here called the Klein-Gordon equation

�φ = m2φ (15)

and which allows wave-like solutions φ ∼ eikµxµ = ei(k·x−ωkt) provided ωk = ck0 obeys the dispersion relation
ω2
k = c2(|k|2 +m2).

The stress-energy tensor is

Tµν ≡ −φ,µ ∂L
∂φ,ν

+ ηµνL

= φ,µφ,ν + ηµν
(
−1

2φ,αφ
,α − 1

2m
2φ2
) (16)

or, in component form

Tµν =

[
1
2(φ̇2 + |∇φ|2 +m2φ2) −φ̇∇φ

−φ̇∇φ ∇φ∇φ− 1
2(φ̇2 − |∇φ|2 −m2φ2)I

]
(17)

where I is the 3× 3 identity matrix. So here the stress energy tensor is symmetric.
Just as the Lagrangian in the scalar elasticity model is L = K − U =

∫
d3x1

2(φ̇2 − |∇φ|2 −m2φ2) the

total energy is H = K +U =
∫
d3x1

2(φ̇2 + |∇φ|2 +m2φ2), so T 00 is the energy density and its integral over
space is the conserved total energy H.
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Of course we could have obtained this much more simply using the tools of ordinary classical mechanics
where, from the Lagrangian L(q, q̇, t), we define the generalised momentum p ≡ ∂L/∂q̇ and the Hamiltonian
H(q,p, t) ≡ q̇ ·p−L. Then considering the change in the Hamiltonian dH = (∂H/∂q) ·dq+(∂H/∂p) ·dp+
(∂H/∂t)dt and invoking Hamilton’s equations (equivalent to the Euler-Lagrange equation) dq/dt = ∂H/∂p
and dp/dt = −∂H/∂x we get dH/dt = ∂H/∂t = −∂L/∂t. So if the Lagrangian we started with has no
explicit dependence on time t, the Hamiltonian is conserved: dH/dt = 0.

In the scalar-elasticity model (and considering one spatial dimension for simplicity) the components of
the vector q are the values of the field at the lattice points φi, the components of p are the φ̇i, and a dot
product like q · p =

∑
i qipi, or a term in the Lagrangian like the kinetic energy T = q̇ · q̇/2 =

∑
i q̇

2
i /2, is a

sum over lattice points or, in the ‘continuum limit’, an integral over space. The Lagrangian L = K − U =∑
i(φ̇

2
i −∆φ2

i −m2φ2
i )/2 is then L =

∑
i Li ⇒

∫
dxL and similarly the Hamiltonian is H =

∑
iHi ⇒

∫
dxH

where Hi = (φ̇2
i + ∆φ2

i +m2φ2
i )/2 is the Hamiltonian density.

What the standard classical mechanics does not yield quite so easily is the form and physical significance
of the other terms in the stress-energy tensor. The vanishing of the 4-divergence of the components of the 0th
column T ν0

,ν is saying ∂0T
00 +∇ · (−φ̇∇φ) = 0 or that the rate of change of energy density is Ḣ = −∇ ·F

where the energy flux density is F ≡ −φ̇∇φ (which, in electromagnetism, is called the ‘Poynting-flux’).
Similarly, the vanishing 4-divergence of the components of the spatial columns T νi,ν = 0 are expressed as
Ṗ = −∇ · S where the momentum density is defined as P ≡ −φ̇∇φ (which is the same as the energy
flux density F for a scalar field) and the momentum flux density – the 3-stress tensor – has components
Sij = Tij .

If we think about a nearly-monochromatic wave-packet varying locally as φ ∼ eikµxµ as we then find its
energy is H = ωk × ωk

∫
d3rφ2 while its total 3-momentum is p = k× ωk

∫
d3rφ2. From this one can show

that such packets have total energy and momentum that obey the relativistic relation H2 = p2 +m2.

3 The gravitational action

The Ricci scalar is R = gµνRµν where Rµν = Rαµαν with Rαµβν = Γαµν,β − Γαµβ,ν + ΓαγβΓγµν − ΓαγνΓγµβ
and where Γαµν = 1

2g
αβ(gβµ,ν + gβν,µ − gµν,β).

In mechanics, the action is S =
∫
dtL, where Lagrangian L is a function of the generalised coordinates

q, their velocities q̇, and time: L = L(q, q̇, t). The velocities usually enter quadratically, and this results
in equations of motion that are second order in time. Similarly, for fields, the Lagrangian density – the
integrand in S =

∫
dt
∫
d3xL(φ, φ,µ) – contains the fields and, again quadratically, their first derivatives

with respect to space-time coordinates. Here the metric will play the role of the generalised coordinates or
the fields and the Ricci scalar that of the Lagrangian density. But while the Ricci scalar contains products
of derivatives of the metric components in the terms coming from products of Christoffel symbols, it also
contains second derivatives via the first two terms in the curvature tensor, which seems problematic. But
these only appear at first order, and, as we now show, the Ricci scalar can be written as a combination of
terms that are quadratic in the metric first derivatives plus total derivatives. These give only ‘boundary
terms’ in the action integral, so, if we consider the fields to be held fixed on the boundary, or imagine the
boundary either to be at infinity – where, as usual, we will consider the fields to vanish – or, as in the case
of a closed cosmology, not to exist at all, then these do not contribute to the variation of the action.

Following Dirac, we split gravitational action into two parts:

Sg ≡
1

16πκ

∫
d4x
√
gR =

∫
d4x(L? − L) (18)

where

L? ≡ 1

16πκ

√
ggµν(Γαµν,α − Γαµα,ν)

L ≡ 1

16πκ

√
ggµν(ΓαγνΓγµα − ΓαγαΓγµν)

(19)

The first of these – which contains the unwanted second derivatives of the metric – can be written as

L? =((((
(((((

√
ggµνΓαµν),α −(((((

((((
√
ggµνΓαµα),ν − Γαµν(

√
ggµν),α + Γαµα(

√
ggµν),ν (20)

where the first pair of terms are the total derivates, which we have struck out, not because they cancel each
other, but to indicate that they do not contribute to δS.
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We would like to express the remaining two terms as products of Christoffel symbols. To do this, we will
use the fact that the metric is covariantly constant so gµν ;α = 0 ⇒ gµν,α = −Γµγαg

γν − Γνγαg
µγ and the

fact that (
√
g),α = 1

2

√
ggγδgγδ,α =

√
gΓναν , which follows from linear algebra as you showed in a homework

problem. These give

(
√
ggµν),α =

√
ggµν,α + gµν(

√
g),α

=
√
g(−Γµγαg

γν − Γνγαg
µγ + 1

2Γγαγg
µν)

(21)

which, in (20), gives 6 terms, two of which cancel, leaving 4 which are two duplicate pairs, that turn out to
be 2L. The result is that the variation of the gravitational action is

δSg =
1

16πκ
δ

∫
d4x
√
gR = δ

∫
d4xL(gρσ, gρσ,τ ) (22)

More often, you will see
∫
d4xL is written as

∫
d4x
√
gLg, where Lg ≡ gµν(ΓαγνΓγµα−ΓαγαΓγµν)/16πκ,

and which, from the definition of the Christoffel symbols, is a function of gρσ and gρσ,τ . However, since
the inverse metric and the determinant are both functions of gρσ, we can consider L, as indicated, to be a
function of gρσ and gρσ,τ .

We can now proceed exactly as we did for the matter fields. The variation of Lg is simply

δL =
∂L

∂gρσ,τ
δgρσ,τ +

∂L

∂gρσ
δgρσ

=

��
�
��

�
��(

∂L

∂gρσ,τ
δgρσ

)
,τ

−
(

∂L

∂gρσ,τ

)
,τ

δgρσ +
∂L

∂gρσ
δgρσ

(23)

since ∂γδgρσ = δgρσ,τ and where we have ‘differentiated by parts’ to eliminate δgρσ,τ . It is still there, of
course, but inside the total derivate term, which, just like the total derivatives in L?, do not contribute to
δSg, which is why it is struck out. Thus the variation of the gravitational action is

δSg =

∫
d4xδgρσ

(
∂L

∂gρσ
− ∂τ

∂L

∂gρσ,τ

)
(24)

and requiring that δSg vanish for an arbitrary variation δgρσ gives Einstein’s equations in a vacuum.
We can evaluate the quantity in parentheses – let’s call it −G̃ρσ/16πκ – most simply in a locally inertial

frame (where the Christoffel symbols vanish and gρσ = ηρσ and
√
g = 1). Because L contains products of

Christoffel symbols, ∂L/∂gρσ = 0, and we can similarly ignore the derivatives of
√
ggµν in the other term

as these would get multiplied by products of Christoffel symbols. The only non-vanishing terms are those
containing second derivatives of the metric – and we have

G̃ρσ = ηµν∂γ
∂

∂gρσ,τ

(
Γ̃αγνΓ̃γµα − Γ̃αγαΓ̃γµν

)
(25)

where the Γ̃αγν ≡ 1
2η

αβ(gβγ,ν + gβν,γ − gγν,β) are the Chrisfoffel symbols with gαβ replaced by ηαβ.
It is now a little tedious, but conceptually straightforward, to perform the derivatives here. The first

term is

∂τη
µν∂(Γ̃αµγΓ̃γνα)/∂gρσ,τ = ∂τη

µνηαβηγπ∂(Γ̃βµγΓ̃πνα)/∂gρσ,τ

= 1
2∂τη

µνηαβηγπ[Γ̃βµγ(δρπδ
σ
ν δ

τ
α + δρπδ

σ
αδ

τ
ν − δραδσν δτπ) + Γ̃πνα(δρβδ

σ
µδ

τ
γ + δρβδ

σ
γ δ

τ
µ − δργδσµδτβ)]

= ∂τ (Γ̃τσρ + Γ̃στρ − Γ̃ρστ ) = 1
2(3gστ,ρ,τ − gρτ,σ,τ − gρσ,τ ,τ )

(26)

while (minus) the second is

∂τη
µν
∂(Γ̃αγαΓ̃γµν)

∂gρσ,τ
= 1

2∂τη
µνηαβηγπ

∂(gαβ,γΓ̃πµν)

∂gρσ,τ
= 1

4∂τη
µνηαβηγπ

∂(gαβ,γ(2gπµ,ν − gµν,π))

∂gρσ,τ

= 1
4∂τη

µνηαβηγπ[δραδ
σ
βδ

τ
γ(2gπµ,ν − gµν,π) + (2δρπδ

σ
µδ

τ
ν − δµρδσν δτπ)gαβ,γ ]

= 1
2 [g,ρσ + ηρσ(gµτ ,µτ − g,τ ,τ )]

(27)
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subtracting the second from the first gives

G̃ρσ = −1
2 [g,ρσ − gρτ,σ,τ + gρσ,τ ,τ − gστ,ρ,τ ]− 1

2η
ρσ(gµτ ,µτ − g,τ ,τ ) + (gρτ,σ,τ − gστ,ρ,τ )

= Gρσ + (gρτ,σ,τ − gστ,ρ,τ )
(28)

So this isn’t identical to the Einstein tensor – it contains an additional asymmetric term – but recall that
what we have calculated here is the quantity in parentheses in (24). That appears contracted with the
symmetric δgρσ so the asymmetric terms cancel, and we obtain

δSg = − 1

16πκ

∫
d4x
√
gGµνδgµν (29)

where we have used the fact that d4x =
√
gd4x in locally inertial coordinates, and which is what we set out

to prove.

4 The stress-energy tensor as the derivative of Lm with respect to the
metric

We have seen that the variation of the gravitational part of the Einstein-Hilbert action (1) is

δ(
√
gLgrav) =

1

16πκ
δ(
√
gR) = − 1

16πκ

√
gGµνδgµν . (30)

The action principle says
δ(
√
g(Lgrav + Lm)) = 0. (31)

For this to be correct, and compatible with Einstein’s equations Gµν = 8πκTµν , it must be that

δ(
√
gLm) = 1

2

√
gTµνδgµν (32)

or that

Tµν =
2
√
g

δ(
√
gLm)

δgµν
(33)

or

Tµν = 2
δLm

δgµν
+ gµνLm (34)

where we have used δ
√
g = 1

2

√
ggνσδgνσ.

Comparing with the formula for the stress-energy tensor in flat space time (or, equivalently, in a locally
inertial frame, where we have gµν = ηµν) Tµν = −φ,µ∂Lm/∂φ,ν + ηµνLm it must be that 2δLm/δgµν and
−φ,µ∂Lm/∂φ,ν are the same.

But that is correct, as we can see by considering e.g. the kinetic term Lkin = −1
2φ,µφ

,µ = −1
2g
µνφ,µφ,ν

for the scalar field. The variation of this with respect to a variation of the metric, holding φ,µ fixed is
δLkin = −1

2φ,µφ,νδg
µν which, with δgνµ = −gναgµβδgαβ, is δLkin = 1

2φ
,µφ,νδgµν and hence 2δLkin/δgµν =

φ,µφ,ν while −φ,µ∂Lkin/∂φ,ν = φ,µφ,ν also.
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