
Physics of the 21-cm transition and the cosmological evolution of the spin temperature

Zheng Zhang∗

Physics Department, Brown University
(Dated: April 20, 2019)

Abstract: We thoroughly talk about basic physics of 21 cm line. Boltzmann distribution is a
good description for hyperfine states of a neutral hydrogen cloud. We derive transfer properties of
21 cm photons and Lyα photons, and the former is optically thin and the latter is optically thick.
Commonly defined temperatures all have universal statistical meanings. Wouythouysen-Field effect
can also be understood as a statistical behavior intrinsically. The global history in EoR can be
divided into several phases. We also discuss how to parameterize the evolution of spin temperature.
One can set these parameters, fesc, f?, fX , Nion, Nα, to simulate the spin temperature.

I. INTRODUCTION

Recent years, we experienced a great leap to studying
the 21 cm line. Many 21 cm observations are well process-
ing, such as the Murchison Widefield Array(MWA), the
Precision Array to Probe the Epoch of Reionization (PA-
PER), the 21cm Array (21CMA), Experiment to Detect
the Global Epoch of Reionization Signature(EDGES)
and so on. They are more and more likely to help us
learn about the galaxies, the reionization and even ba-
sic physics. The goal of this paper is to go through the
physics underline the 21 cm observations.

This paper is organized as follows. We first talk about
the basic physics of 21 cm hydrogen transition in section
II. In section III, we describe how are these signals ob-
served. In section IV, we will talk about the global signal,
including the global history of the Epoch of Reionization
and a discussion on how to parameterize the evolution of
the spin temperature.

II. PHYSICS OF 21 CM LINE

Top codebreakers begin their work with thoroughly
surveying their opponents who invented the encryption.
After then, they construct a detailed personality, and put
themselves in opponents’ positions. When this kind of
emotional interpolation meets with the rational extrapo-
lation, the ultimate secrets were found.

The way we decode the 21 cm signature from a neutral
hydrogen cloud is nothing more than what those code-
breakers do. If anything, we are lucky enough to survey
our opponent in a universal way, i.e., physics. In this sec-
tion, physics of atomic hydrogen and statistics of abun-
dant hydrogen atoms will tell how the cosmic history was
encrypted.

In this section, we focus on a macroscopic quantity, the
ratio between the number densities ni of the hydrogen
atoms in 1S singlet and 1S triplet levels, of a neutral hy-
drogen cloud. (Throughout this paper, we denote 0 and
1 as singlet and triplet levels respectively.) As we will see
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in following sections, it is this ratio characterized by the
spin temperature TS that determines the detectability of
the 21 cm signal.

Generally, two kinds of processes cause the hyperfine
transitions of hydrogen atoms and thus change the ratio
n1/n0, collision processes and radiation processes. We
will first discuss the collision processes and introduce TS
statistically. Then we move on to the radiative processes.
We will just mention the coupling of collisions, for its
messy calculation but simple physics and nothing to do
with observation. In contrast, we will discuss the radia-
tive processes analytically, qualitatively and intrinsically.

A. Statistical description of an ideal neutral
hydrogen cloud

Let’s first discuss an ideal neutral hydrogen cloud. It’s
ideal for that: 1. There is no background radiation. 2.
It’s in an equilibrium state. We need further restricts on
what does the equilibrium mean. Obviously, it doesn’t
only mean the kinetic equilibrium, since we are talking
about statistics of the hyperfine states. The equilibrium
means both kinetic equilibrim and hyperfine states (1
and 0) equilibrium. The involved degrees of freedom are
kinetic degrees of freedom and hyperfine degrees of free-
dom. Other hyperfine states beyond 0 and 1 are reason-
ably not considered.

Collision and decay are two regimes in the ideal neutral
hydrogen cloud regarding the 21 cm transition. However,
only collision is a statistical behavior, which is the only
regime of energy redistribution here in the ideal system
and decay is an atomic behavior. When the efficiency
of collisions is larger than that of decay, one can say
this system would reach and then stay in an kinetic-and-
hyperfine equilibrium state. Roughly, the spontaneous
decay rate of a hydrogen atom is tiny(as discussed in
the following section). In fact, to be exact, we need to
solve a Boltzmann equation which couples the spin and
velocity distribution[1]. But here, we just assume that a
single ratio of 1 and 0 can apply to the entire hydrogen
distribution.

To characterize the ratio n1/n0, a macroscopic param-
eter, one needs to choose an appropriate statistical sys-
tem. It’s not a simple choice among the Fermi system,
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the Bose system, or the nonexistent Boltzmann system.
We must start with the intrinsic statistical mechanics—
the detailed energy redistribution. In collision processes,
kinetic degrees of freedom are responsible for energy ex-
change among not only themselves but also hyperfine
freedom degrees (via H-e− collisions and H-H collsions).
However, the hyperfine freedom degrees could only ex-
change energy with kinetic freedom degrees, but not
among themselves, which leads us to consider each hy-
perfine degree of freedom separately. For this reason, one
can safely picture the environment of a hyperfine degree
of freedom as: a single hyperfine freedom degree contacts
with a reservoir with kinetic temperature Tk. For any
given hyperfine state, a frozen single degree of freedom,
the abundance of possible microstates of the reservoir
gives the weight of the hyperfine state,

ni ∝ gie−Ei/kBTk . (1)

Thus, the ratio n1/n0 reads

n1

n0
=
g1

g0
e−E10/kBTk . (2)

Here one finds that the ratio follows Boltzmann distri-
bution, but definitely not the exact well-defined Boltz-
mann system in textbooks. We can see that the ratio is
determined by the kinetic temperature in our ideal sys-
tem. Generally, we can define a parameter, the spin tem-
perature TS , to characterize n1/n0 in any system beyond
equilibrium:

n1

n0
=
g1

g0
e−E10/kBTS . (3)

Finally, we come to the common definition of TS . In our
ideal case, TS = Tk. We might as well always keep this
model in mind where the TS is linked to both statistical
and thermal meaning.

Although we have extrapolated a statistical way to
characterize the distribution of hyperpine states in an
ideal neutral hydrogen cloud, we still need to learn about
microscopic collisional processes. Details of atomic be-
haviors enable us to discuss a real system where all kinds
of processes happen and one needs to figure out contribu-
tions of each source. We should mainly include (i) H-H
collisions; (ii)H-e− collisions; (iii) other species.

We let C10 and C01 be the de-excitation and excitation
rates per atom from collisions respectively. For any type
of collision, the rate must be proportional to the number
of colliding particles times some function of the kinetic
temperatures. Therefore, the ratio of 0 → 1 to 1 → 0 is
a function of the kinetic temperature.

B. Radiative processes of 21 cm transition

If we put our ideal hydrogen cloud in a radiation field,
more considerations should be taken to determine the

spin temperature. For real systems in EoR, the radia-
tion field is CMB and ionized photons inside the IGM.
There are mainly two kinds of photons involved in the
hyperfine transitions between 0 and 1: the 21 cm pho-
tons and Lyα photons. The former accounts for direct
transitions between 1 and 0, while the latter accounts
for Lyα scattering processes, part of which significantly
affects the spin temperature.

We will first describe a general radiative process,
and then characterize these two corresponding processes.
Throughout the following sections, we use the specific
intensity or brightness Iν to describe the energy carried
by rays passing through a given direction, per unit area,
frequency, solid angle and time.

1. The emission and absorption of photons by an atomic
system

Before generally discussing the radiation propagation,
we should first characterize the absorption and emission
per atom. [citations...] Einstein first discovered the rela-
tion between emission and absorption as atomic behav-
iors by proposing three probable processes: spontaneous
emission, stimulated emission, and absorption. They are
respectively characterized by Einstein coefficients A21,
B21, B12, where 1 and 2 denote two discrete energy lev-
els, E1 and E2. A transition from 1 to 2 (2 to 1) hap-
pens by absorption (emission) of a photon of energy hν0.
Each Einstein coefficient (sec−1) describes the transition
probability per unit time for its corresponding process.
Precisely, many processes can cause the true energy dif-
ference between E1 and E2 deviates from hν0. This spec-
trum structure peaked at ν0 is described by a line profile
function φ(ν). For convenience and following convention,
we take the normalized line profile:∫ ∞

0

φ(ν)dν = 1. (4)

Generally, φ(ν) includes natural, thermal, pressure
broadening and so on[2][3].

These Einstein coefficients are essentially atomic prop-
erties, which isn’t associated with the macroscopic state
of system. But we can assume the system is in detailed
balance, which is a reasonable assumption since the ex-
pansion time scales promise the system in detailed bal-
ance, so that we have one more equation to limit these co-
efficients. Phenomenologically, the spontaneous emission
is independent of brightness Iν , but stimulated emission
and absorption are proportional to Iν . Thus, detailed
balance gives the equality of numbers of transitions per
unit time per unit volume out and into state 1:

A21n2 +B21n2Iν −B12n1Iν = 0, (5)

which derives the brightness

Iν =
A21

B12(n1/n2)−B21
. (6)
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For further discussion on relations among Einstein coef-
ficients, we need the distribution functions for ni, as well
as the analytical form of Iν . The detailed balance implies
the hyperfine equilibrium, for which the kinetic equilib-
rium is a premise. As we have discussed in part A, such
a atomic system follows Boltzmann distribution. Thus,

Iν =
A21

B12(g1/g2)e−E12/kBT −B21
(7)

What’s more, in thermodynamic equilibrium one also
finds the intensity follows Plank law, which is expressed
as

Bν(T ) =
2hν3/c2

exp (hc/λkT )− 1
. (8)

Iν = Bν(T ) gives the Einstein relations:

g1B12 = g2B21, A21 =
2hν3

c2
B21. (9)

Based on atomic properties discussed above, now we can
move on to macroscopic absorption, emission and further
transfer properties when a ray passes through matter.
We denote the emission coefficient and the absorption co-
efficient as jν and αν separately. To obtain jν , one needs
to know the frequency distribution of the emitted radi-
ation during spontaneous decay. A good and simple as-
sumption is that the emission is distributed in agree with
the same line profile φ(ν) that describes absorption[3].

On one hand, the emission coefficient describes the
amount of energy emitted in unit volume, solid angle,
frequency and time. On the other hand, each atom con-
tributes hν0 distributed over all directions per transition.
Thus, one can express the energy of emitted radiation in
two identical ways:

jνdV dΩdνdt = (hν0/4π)φ(ν)n2A21dV dΩdνdt, (10)

which derives

jν =
hν0

4π
n2A21φ(ν). (11)

Similarly, we can express αν , by definition dIν =
−ανIνds, in terms of Einstein coefficients

αν =
hν

4π
φ(ν)(n1B12 − n2B21). (12)

Note that the emission coefficient just accounts for spon-
taneous emission, while the stimulated emission is con-
sidered as a negative absorption into the absorption co-
efficient, for the merit that these two processes are both
dependent on the brightness Iν .

Thus, the radiative transfer function in terms of emis-
sion and absorption coefficients is

dIν
ds

= −ανIν + jν . (13)

Optical depth is defined by

τν(s) =

∫ s

s0

αs′ds
′

=

∫
ds
hν

4π
φ(ν)(n1B12 − n2B21)

=

∫
ds

3c2A21

8πν2
21

(n1
g2

g1
− n2)φ(ν)

=

∫
dsσ21(n1

g2

g1
− n2)φ(ν),

(14)

here σ21 = 3c2A21/8πν
2
21 is defined as the cross section

of an atom, which is as useful as the Einstein coefficient
A21 to characterize the possibility of decay in a gas.

We see that optical depth is measured by integrating
absorption coefficient along the path of a travelling ray.
τν > 1 corresponds to a so called optically thick or opaque
medium. When τν < 1, the medium is no surprisingly
said to be optically thin or transparent. The physics
meaning behind these denominations seems more obvi-
ous if we express the radiative transfer equation with τν
and solve it. The equation can be rewritten as,

dIν
dτν

= −Iν + Sν . (15)

Here, Sν ≡ jν/αν is called the source function. In our
considerations, the source function is constant. Then the
solution reads

Iν(τν) = Iν(0)e−τν + Sν(1− e−τν ). (16)

2. Neutral hydrogen cloud baths in the CMB:
Radiative Transfer of the 21-cm line

In this case, the wave length λ = 21.1061 cm corre-
sponds to a frequency of ν = 1420.4057 MHz. To char-
acterize this radiative transfer we have to calculate the
Einstein coefficients. One can calculate A10 and then use
the Einstein relations to get all these coefficients so that
the radiative transfer of 21 cm line is determined. We
assume that Iγ = ICMB , since 21 cm photons almost all
come from CMB.

J. P. Wild first calculated A10 in his paper in 1951[4].
The transition probability of the 21-cm line is A10 =
2.85 × 10−15 sec−1. Therefore one can calculate the op-
tical depth of 21 cm line in terms of A10:

τν =

∫
dsσ10(1− e−E10/kBTS )φ(ν)n0

≈ σ10

(
hν

kBTS

)(
NHI

4

)
φ(ν),

(17)

here NHI is the column density of atomic hydrogen and
the factor 1

4 accounts for the ratio of atoms in the hy-
perfine 0 state, since all applications have TS � T ∗ =
E10/kB .
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We can see τν � 1, which implies the transparency
of 21 cm line for transfer in neutral hydrogen cloud.
This is definitely a nontrivial merit! (refer to Furlan-
etto 2006) For more exact expression, we use a simple
assumption, which is often a good one in astrophysics,
that IGM gas expands uniformly with the Hubble flow.
Then the velocity broadening of a line segment s will
be ∆V ∼ sH(z) and the line profile function will be
φ(ν) ∼ c/[sH(z)ν][2]. The column density along s can
be written as NHI = xHInH(z)s, where xHI is the neu-
tral fraction of hydrogen. Then, an exact expression for
the 21 cm optical depth reads

τν0 =
3

32π

hc3A10

kBTSν2
0

xHInH
(1 + z)(dv‖/dr‖)

≈ 0.0092(1 + δ)(1 + z)3/2xHI
TS

[
H(z)/(1 + z)

dv‖/dr‖

]
.

(18)

3. Lyman lines and Wouthuysen-Field effect

In a neutral hydrogen cloud, not only the 21-cm pho-
tons play an important role in the redistribution of hy-
perfine states, but also Lyman photons. An atom at
ground state can absorb a Lyman photon and transit to
higher levels. After a while, the atom will leave the un-
stable state and give off a photon. Those atoms may di-
rectly decay (nP→1S) so that the atom goes back to the
ground state and a Lyman photon is produced, which
may change the hyperfine states. This process is then
reasonably named as Lyman resonance, UV scattering
or other combinations of these words. Lyman excited
atoms can also cascade through intermediate levels so
that different photons emerge.

Simple comparison between Lyα and higher Lyman-n
levels tells us that only Lyα lines are of great influence
to the redistribution of hyperfine states: The possibili-
ties of direct decay from higher Lyman-n levels to ground
state are PnP→1S ∼ 0.8, so typically a Lyman-n photon
can scatter 1/(1 − PnP→1S) ∼ 5 times before a decay
cascade[5]. Lyα photons, by contrast, can typically scat-
ter for hundreds of thousands times. Thus, compared
with Lyα scattering, higher Lyman-n coupling is sup-
pressed.

Siegfried Wouthuysen and George Field first explored
the so called Wouthuysen-Field effect, which is illustrated
in Figure 1. It says atoms can change hyperfine states
through series of Lyα absorption and spontaneous ree-
mission. Quantum selection rules allow transitions of
∆F = 0,±1, except 0 → 0. An atomic hydrogen can
jump up and down between two fine levels, 1S and 2P,
but the hyperfine levels they locate are not unique. Thus,
part of this scattering contributes to spin-flip.

First, Let’s discuss the radiative properties of Lyα
lines.As what we have done in previous sections, let’s
first study the radiative transfer of Lyα line to qualita-
tively grasp Lyα transfer. Atomic physics tell us that the

Lyα decay rate is Aα = 8π2e2fα/3mecλ
2
α = 6.25 × 108

s−1, where fα = 0.4162 is the oscillator strength, and the
frequency of Lyα line is να = 2.47× 1015 Hz.

One assumption is certainly permitted that the stim-
ulated emissions can be neglected. Therefore we can ex-
press the optical depth of Lyman photons

τα =

∫
drσαφα(ν)nHI

=
3Aαλ

3
α

8π

xHInH(z)

H(z)

≈ 1.6× 105xHI(1 + δ)

(
1 + z

4

)3/2

,

(19)

where we have applied assumptions on the line profile
of Lyα and some tricks. More details refer to The First
Galaxies In The Universe by Leob and Furlanetto [5].
Qualitatively, one can conclude that the neutral hydro-
gen cloud is optically thick for Lyα lines (τα � 1). These
properties help us picture the scattering processes: Lyα
photons travel in the neutral hydrogen cloud, not a long
journey, it will be absorbed and then quickly another Lyα
photon emerge. After another short journey, the same
process will happen again. It can scatter for a large num-
ber of times and redistribute energy frequently, which led
Wouthuysen to propose this explanation in 1952[6]: “one
can take the gas in a large container, with perfectly re-
flecting walls. Let the gas in equilibrium at temperature
T , together with Planck radiation of the same tempera-
ture. The scattering processes will not affect the radia-
tion spectrum.” He further reviewed that, “after a finite
but large number of scattering process, the photons will
obtain a statistical distribution in the vicinity of the ini-
tial frequency proportional to the Planck-radiation spec-
trum of temperature T”. This is innovative but also not
accurate. One can generally agree with this since it’s a
simple fact that, no matter whether the gas is in the con-
tainer, the system is a blackbody in thermal equilibrium.
But the discription is not absolutely right. We will dis-
cuss the details in section D to explain that in thermal
equilibrium, TS = Tα = TK . Besides Tα = TK , we also
need to care about the coupling coefficient xα, which will
be introduced and discussed in section C.

C. The spin temperature

As we have discussed, TS is determined by several
competing processes, collisional processes and radiative
processes. Let’s use temperatures characterize all these
modes of energy. Before that we must understand the
temperature exactly otherwise one will always think
these temperatures are just definitions rather than intrin-
sic. A temperature T can be converted to β = 1/kBT ,
which is a parameter of a system:

β(E) =
∂ ln Ω

∂E
, (20)
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FIG. 1. Left:Level diagram illustrating the Wouthuysen-Field effect. The solid lines label transitions causing spin-flip and the
dashed lines label transition uncorrelated to spin-flip. Right: Decay chains for Lyman-β and Lyman-γ excitations.[2]

where Ω is the number of microstates and E is the en-
ergy of the system. When any two systems are in thermal
equilibrium, the β of two systems are equal (β1 = β2) by
maximizing the number of microstates of combined sys-
tem. In this paper, different modes of energy are viewed
as different systems. Three temperatures are of special
interest: the kinetic temperature of electrons and atoms,
TK ; the temperature of cosmic background radiation, Tγ ;
and the temperature of certain lights (in the vicinity of
Lyα photons), Tα.

Generally, one can characterize TS by the equation of
thermal equilibrium

n1(A10 +B10Iν + P10 + C10) = n0(B01Iν + P01 + C01),
(21)

where Iν ≈ ICMB is the specific intensity of CMB pho-
tons .

If we assume each regime is in thermal equilibrium,
we can express the ratios of transition rates in terms of
their corresponding temperature of the regime. Since
T∗ � TK in collisional regime, Eqn.(2) gives

C01

C10
=
n1

n0
≈ 3

(
1− T∗

TK

)
. (22)

Similarly, B01/B10 reads

B01

B10
≈ 3

(
1− T∗

Tγ

)
, (23)

and the ratio of P01 and P10 is

P01

P10
=
n1

n0
≈ 3

(
1− T∗

Tα

)
. (24)

Thus, when the populations of 0 and 1 states do not
change, we have[7]

n1

n0
=
g1

g0
exp(−T∗/TS) ≈ 3

(
1− T∗

TS

)

= 3

Tγ
T∗
A10 +

(
1− T∗

TK

)
C10 +

(
1− T∗

Tα

)
P10

A10

(
1 +

Tγ
T∗

)
+ C10 + P10

,

(25)

which gives

T−1
S =

T−1
γ + xαT

−1
α + xcT

−1
k

1 + xα + xc
, (26)

where

xc =
T∗
Tγ

C10

A10
, and xα =

T∗
Tγ

P10

A10
. (27)

Here let’s discuss more about the coupling of Lyman-
α. Similar to the general radiative process we discussed
above, the Wouthuysen-Field coupling must depend on
the atomic properties, i.e., the total scattering rate per
atom of Lyα photons,

Pα = 4πσα

∫
dνJν(ν)φα(ν). (28)

where Jν(ν) is the angle-averaged specific intensity of the
radiation field. We can next relate the scattering rate P01

to the total scattering rate Pα. A simple assumption is
that the radiation field is constant so that one can derive
P01 = 4Pα/27[8]. Thus, the coupling can be expressed as

xα =
16π2T∗e

2fα
27A10Tγmec

SαJα, (29)

where Sα is a correction of order unity, Jα is the specific
flux evaluated at Lyα frequency.

D. A brief review on blackbody radiation

Blackbody is an ideal object that absorbs all incident
radiation, and can also emit radiation. Radiation emitted
by a blackbody in thermal equilibrium is called black-
body radiation, whose distribution follows the Planck
function:

Bν(T ) =
2hν3/c2

exp(hν/kT )− 1
. (30)
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In fact, when a radiation is itself in thermal equilib-
rium, one finds the Planck law is also followed. Here
in this paper, we call all those radiations following the
Plank law blackbody radiation. In order to derive the
Planck function as a radiation self-equilibrium distribu-
tion, let’s first set up such a system. Of course, one
shouldn’t expect the energy distribution happens via the
negligible self-interaction between photons. We need a
system where photons at any frequency can freely and
efficiently emerge or annihilate so that energy can be re-
distributed in the whole frequency domain (to be exact,
one should say ”permitted frequencies given by quantum
mechanics”, which is discrete but continuity is an ex-
cellent approximation). Since photons are massless and
have 0 chemical potential, there is no number conser-
vation law and mass is conserved all the time so that
our expectation is not unreasonable. One can imagine
a container with a hole. For convenience let’s make it a
regular box (so that we have simple periodic boundary
condition). Total energy of radiation is conserved within
this box and photons can be created or destroyed by the
walls. One can use a grand canonical ensemble to study
this system, and photons follow Bose-Einstein statistics.
Thus the average number of photons of frequency ν is

nν =
1

exp (hν/kT )− 1
, (31)

and the average energy over all states accounting for the
contribution of photons with frequency ν to each state is
(This long name is so stupid...I just can’t come up with
any other statement as accurate but more beautiful.)

Ē(ν) =
hν

exp (hν/kT )− 1
. (32)

As claimed before, we use a function with a dimension
of radiation energy density (energy per volume per fre-
quency per solid angle), uν , to characterize the distribu-
tion of photons. In fact, uν and Ē describe the same thing
in two different parameter spaces, the former is in “real
space⊗frequency space” and the latter is in phase space,
which can be viewed as “real space⊗k-space”. Let’s first
figure out the equivalent integration in respective space:∫

d3k =

∫
k2dkdΩ =

∫ (
2π

c

)3

ν2dνdΩ. (33)

The shape of the container gives the boundary condition
of the wave function, which derives the number of states
in an element of k−space is

∆N = 2 · V

(2π)3
d3k, (34)

here we have considered the degeneracy of photons. Thus
the total number of states is

N = V

∫
2

(2π)3
d3k = V

∫
2

(2π)3

(
2π

c

)3

ν2dνdΩ

= V

∫
2ν2

c3
dνdΩ.

(35)

One finds that the density of states ( the number of states
per volume per frequency per solid angle) is given,

ρ =
2ν2

c3
. (36)

Then the diversity of expressions for the energy density
derives

uνdV dνdΩ = Ē · 2

(2π)3
dV d3k

= Ē ·
(

2ν2

c3

)
dV dνdΩ.

(37)

Thus, we have

uν =
2hν3/c3

exp (hν/kT )− 1
. (38)

As to the radiation intensity Iν , which measures the flux
of radiation, is achieved via Iν = uνc. Thus

Iν =
2hν3/c2

exp (hν/kT )− 1
, (39)

which is exactly the Planck function.
Generally, we see that the Planck law is the one de-

scribes not only the thermal radiation of a blackbody
but also the photon distributions of a radiation in ther-
mal equilibrium. One can say they incorporate the same
physics (which is discussed as the third point below), but
historically, the former is a phenomenological one, while
the latter is intrinsic. As for what is the “wall” in real
situation, the efficient Compton scattering in the early
universe is a good example. At the moment of the last
scattering, the background photons were all left in good
accordance to the Planck function till now, which implies
the second property discussed below.

Some further discussion about the properties of black-
body radiation is helpful:

1. The temperature of a blackbody radiation can be
determined by identifying either radiation intensity or
the shape of spectrum (line profile) at the vicinity of a
certain frequency.

2. Regimes of energy redistribution for photons: Be-
sides the ideal wall, Compton scattering and transi-
tions between energy levels of atom systems are all such
regimes. There is no doubt that existence of these
regimes is not enough for photons to reach thermal equi-
librium, where the efficiency of energy redistribution
should make sure the macro-properties of system are con-
vergent in time series.

3. Considering the symmetry of absorption and emis-
sion (B21 = B12) at atom scales and symmetries of other
processes, one should notice that a blackbody can emit
photons at any frequency when we say a blackbody can
absorb all photons. From this, one can understand the
blackbody as a system inside which abundant processes
happen and photons at any frequency can freely emerge
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or annihilate. And the thermal radiation is photons af-
ter “the last scattering”, before which countless processes
have made sure a distribution with a dominant number
of microstates. Therefore, it’s reasonable that the ther-
mal radiation of a blackbody shares the same function
with radiation itself in thermal equilibrium.

4. Blackbody radiation freely transferring in a space
expanding with Hubble flow is always a blackbody radi-
ation with temperature T1(a1/a2), where a1 and T1 are
respectively the scale factor and temperature when the
energy redistribution regime is removed and a2 is the
scale factor when the temperature is measured. A simple
derivation as follows:

Denote the frequency of the same photon as ν1 and ν2

at a1 and a2 respectively. Then we have

a1ν1 = a2ν2. (40)

Note that the just redshift happened to per photon and
there is no statistical behaviors when a1 < a < a2. So
the occupation number nν2 is always equal to nν1 . How-
ever, the density of states, which is of particular note, is
ρ(ν1) · (dν1/dν2) · (dV1/dV2) = ρ(ν1)(a2/a1)−2. Thus, the
average energy is

Ē(ν2) =
hν2

exp (hν1/kT1)− 1
, (41)

and the energy density uν comes to be

uν2dV dν2dΩ = Ē(ν2)

(
2ν2

1

c3

)(
a2

a1

)−2

dV dν2dΩ. (42)

Thus,

uν2 = Ē(ν2)

(
2ν2

1

c3

)(
a2

a1

)−2

=
2hν3

2/c
3

exp [hν2/kT1(a1/a2)]− 1
,

(43)

which derives the brightness Iν follows the Planck func-
tion with temperature T = T1(a1/a2).

5. “Tα = TK”.
The true Lyα frequencies may be the successive vicin-

ity of the initial Lyα frequency, or just discrete frequen-
cies that continuity is not a good assumption. But that
doesn’t matter. We know the neutral hydrogen cloud is a
place where Lyα radiation can redistribute over possible
frequencies. Once the intensity of a specific frequency is
deviated from equilibrium value, it will receive a nega-
tive feedback(stimulated emission/absorption) so that it
will be pull back to be closer to the equilibrium value.
This merit of the regime together with the large num-
ber of scattering processes allow us to say the Lyα ra-
diation can reach a thermal equilibrium so that we can
use a color temperature Tα to characterize the radiation
distribution. What’s more, it’s in equilibrium with the
hyperfine states: in the system combined by Lyα radi-
ation and hyperfine states, the total energy is constant.

They can exchange energy and finally the system will
deposit constant energy in hyperfine system. At that
time, βα = βS . Besides, collisional regime allows the
hyperfine states exchange energy with kinetic system, so
that in thermal equilibrium βS = βK . Thus, when these
regimes join together and reach a thermal equilibrium,
we have βα = βS = βK , i.e., Tα = TS = TK . But note
that the Planck function incorporates the state density
ρ = 2ν2/c3 of a successive frequency domain (Although
periodic boundary condition gives discrete frequencies,
continuity is a good assumption.). However, since we are
not sure the structure of accessible frequencies, we can’t
say the shape is according to the Planck shape. Even if
the shape of Lyα distribution follows the Planck shape,
as pointed out in our first point, “Both magnitude and
shape of the spectrum can identify the temperature of ra-
diation”. Thus their magnitudes should be the same, not
only be “proportional to Planck radiation” as Wouthuy-
sen said.

III. OBSERVATION

By convention, we quantify Iν by the equivalent bright-
ness temperature, Tb(ν), such that Iν = Bν(Tb). The
solution of radiative transfer equation, in the Rayleigh-
Jeans limit, now can be written in a form with respect
to brightness temperature,

T ′b(ν) = Tex(1− e−τν ) + T ′R(ν)e−τν , (44)

Here, the excitation temperature Tex is just the spin tem-
perature TS , and T ′R is TCMB . We hope to measure

δTb =
TS − Tγ

1 + z
(1− e−τν )

≈ TS − Tγ
1 + z

τν

≈ 27xHI(1 + δ)

(
Ωbh

2

0.023

)(
0.15

Ωmh2

1 + z

10

)1/2(
TS − Tγ
TS

)
,

(45)

where xHI is the neutral fraction of hydrogen, δ is the
fractional overdensity in baryons[9].

Then the mean/global signal is

∆T ≈ 9xHI(1 + z)1/2

[
TS − Tγ
TS

]
. (46)

IV. GLOBAL 21 CM SIGNAL

A. The global history

Next we will look at the evolution of global signal qual-
itatively by discussing the most important phases. This
part refer to two reviews[2, 9]. Just an outline.
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FIG. 2. Different epochs of the 21 cm signal.[9]

As shown in figure.2, some important points in time
are listed. They are at redshift: z ≈ 200, when gas and
photons are about to decouple; z ≈ 30, the beginning
of the dark age; z?, the first galaxies form; zα, when
the gas is everywhere strongly coupled to TK ; zh, when
heating is significant and TK is equal to Tγ again; zT , the
time of 21 cm signal saturates; and zR, about that time
Reionization completes. These epochs are not exactly
determined, and even the sequence of some events are
not sure.

When 200 . z . 1100, the Compton scattering dom-
inates the thermal equilibrium, setting TS = TK = Tγ .
Thus there is no detectable 21 cm signal. After then,
photons and the gas decouple but the gas is still very
dense and collision coupling dominates, so that we still
have TS = TK . Photons cool with the Hubble flow
with a relationship of Tγ ∝ (1 + z), while the gas fol-
lows TK ∝ (1 + z)2, so that there is a time, about
40 . z . 200, TK is less than Tγ . Thus this regime
leads to an absorption global signal.

When z? . z . 40, as the gas density decreases, the
radiative coupling gradually plays an more important
role than the collisional coupling, which sets TS = Tγ .
Thus, there is no detectable 21 cm global signal in
this epoch. z? is an important critical point when first
sources emerge, which emit both Lyα photons and x-rays.
In areas around these sources, Wouthuysen-Field effect
set TS = TK . In this regime, Lyman-α coupling may
not dominate the spin temperature as rapidly as other
regimes. As more and more stars form, the Lyα coupling
will saturate so that the gas will everywhere strongly cou-
ples to TK . Thus, this epoch leaves an absorption signal,
which corresponds to a T̄K . T̄S . Tγ . At z = zα, the
critical point where Lyα flux just saturates, T̄S = T̄K
globally. Note that heating regime is more and more im-
portant since that time. Before the T̄K increases to be
equal to Tγ , which happens at z = zh, we still have the
absorption signal. But after then, TS ∼ TKTγ , we can
see emission signal. With the heating go further, the
emission signal increases till z = zT .

When zT . z . zR, we have TS ∼ TK � Tγ . So the
term of TS in observed brightness temperature(Eqn.(45))
vanishes, i.e., (TS − Tγ)/TS → 1. The magnitude of ob-

servation doesn’t depend on TS any more so that the 21
cm signal saturates. But at the same time, the filling
fraction of H II regions becomes more and more signifi-
cant, and finally there are just neutral hydrogen islands
source the 21 cm signal[9]. All the above events are en-
coded in Fig.3.

B. How to parameterize the evolution of spin
temperature in EoR?

Although it’s not practical for the author to simulate
the global history in this project. We will discuss a sim-
ple model without dramatic difference with theoretical
expectation, as a practice to know more about how to
characterize the reionizing universe.

From Eqn.(46), one can see that the global signal
hinges on the neutral fraction of hydrogen xHIand the
spin temperature TS . In the Epoch of Reionization, the
spin temperature tightly couples to the kinetic tempera-
ture of gas, thus we will focus on how to express TK .

The evolution equation of the gas temperature is

dTK
dt

=
2TK
3n

dn

dt
+

2

3kB

∑
j

εj
n
, (47)

The first term expresses the adiabatic cooling while the
second term accounts for other heating or cooling sources,
such as Compton heating, X-ray heating, Layman-α
heating and shock heating[10]. εj (erg · s−1 · cm−3) is the
density of input energy into the gas by source j. The most
significant source is thought to be X-rays from quasars
and first galaxies, since they can travel relatively long
distance. We denote fX,h, fX,ion and fX,coll to be the
fraction of X-rays energy going to heating, ionization,
and excitation respectively. For simplicity, Furlanetto
assumed that the star formation rate is proportional to
dfcoll/dt, here fcoll is the fraction of gas collapsed onto
virilized halos[2]. By this assumption, we can write

2

3

εX
kBnH(z)

= 103KfX

(
f?
0.2

fX,h
0.2

dfcoll/dz

0.01

1 + z

10

)
,

(48)
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FIG. 3. The 21 cm cosmic hydrogen signal. [9] Copyright 2010 Nature Publishing Group.

where f? is the star formation efficiency and fX is a cor-
rection factor accounting for the difference at high red-
shifts. This equation tells us that X-ray heating is very
rapid[2].

Next we have to solve the ionization fraction x̄i, i.e., to
characterize the ionization history. Here we will associate
the star formation rate (SFR) with the reionization and
include both ionizing sources and recombinations[2], so

dx̄i
dt

= ζ(z)
fcoll
dt
− αC(z, x)ix̄i(z)n̄e(z), (49)

where ζ = AHef?fescNion is the fraction of ionizing effi-
ciency, fesc is the fraction of ionizing photons that escape
their host galaxy into the IGM, Nion is the number of ion-
izing photons per baryon produced in stars, and AHe is

a correction for helium[10]. α is the recombination coef-
ficient and C is the clumping factor [2][5]. One N-body
simulation in the IGM gives an approximation of C[11]:

C(z) = 27.466 exp(−0.114z + 0.001328z2). (50)

In the source term of Eqn.(49), the collapse fraction fcoll
at high redshift is estimated as the mass fraction in halos
above the cooling threshold, i.e., the minimum mass of
halos where gas cools efficiently[12]. Thus, fcoll reads

fcoll = erfc

[
δc(z)√

2σ(mmin)

]
. (51)

In order to calculate the mass, mmin, a virial temperature
is needed, which is defined as

Tvir =
µmpV

2
c

2kB
= 1.98× 104

( µ

0.6

)( M

108h−1M�

)2/3 [
Ωm
Ωzm

∆c

18π2

]1/3(
1 + z

10

)
K, (52)

where µ and mp are respectively the the mean molecular
weight and the proton mass[12]. Roughly, the minimum
mass is corresponding to a halo of Tvir = 104K. Eqn.(52)
can tell us the mass corresponding to Tvir = 104K[12].
In this way one can derive the reionization history when
C and Nion are set.

Further details in virial temperature need to be speci-
fied:

Ωzm =
Ωm(1 + z)3

Ωm(1 + z)3 + ΩΛ + Ωk(1 + z)2
, (53)

where Ωk is

Ωk = − k

H2
0

= 1− (Ωm + ΩΛ + Ωr). (54)

And the final overdensity relative to the critical density
at the collapse redshift is [12]

∆c = 18π2 + 82(Ωzm − 1)− 39(Ωzm − 1)2, (55)

where we have applied Ωm + ΩΛ = 1.
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Now, we have expressed xi and TK . However, as we
discussed in the global history: when z? . z . zα, there
is no single source dominating the coupling. The spin
temperature is between Tγ and TK , thus we need to ex-
press the coupling coefficient xα too, i.e., to characterize
the average Lyα background (see Eqn.(29)).For estima-
tion purpose, this quantity is approximated as[10]

Jα ≈
c

4π
f̄recf?n̄

0
b∆fcoll

Nα
δν

(1 + z)2, (56)

where f̄rec is the average probability that a photon in the
interval (να, νLL) is converted into a Lyα photon[10].

Generally, we can try to characterize the ionization
history xi, the kinetic temperature TK and the average
Lyman-α background jα to parameterize the evolution
of the spin temperature. Our extrapolation follows the
below path:

δTb = δTb(xi, TS) = δTb(xi, jα, TK)

= δTb(xi(ζ, fcoll, C), jα, εX)

= δTb(ζ,mmin, f?, jα, εX)

= δTb(fesc, f?, fX , Nion, Nα).

(57)

Thus, one can simulate the global signal using a simple
model and setting several parameters: fesc, f?, fX , Nion,
and Nα.

V. CONCLUSION

In this paper, we studied the physics of 21 cm tran-
sition, including how to characterize the distribution of
the hyperfine states and radiative transfer of 21 cm line
and Lyα line in neutral hydrogen gas. Also, by discussing
the balckbody radiation, we explored intrinsic physics of
Wouthuysen-Field effect and find that. What’s more, the
spin temperature sourced by competing processes and the
global signal are discussed. We also derive that one can
simulate the global signal using a simple model and set-
ting several parameters: fesc, f?, fX , Nion, and Nα.
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