On the covariance matrix sampler

Zheng Zhang
May 13, 2025

1 Introduction

Given an n-dimensional Gaussian realisation s, the covariance matrix follows the following
distribution
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It is generally impossible to sample a rank-n covariance matrix with a single realisation of the
n-dimensional vector, since it is statistically underdetermined. However, it is usually the case
that there is significant degeneracy in S, and the number of degrees of freedom of S may be
less than n. For these cases, we can sample S with s using the following strategy:

1. Separate the independent variables.
2. Group the independent and identically distributed variables.
3. Estimate the variance of each distribution using different realisations.

4. Sample the covariance matrix

2 Sampling 21 cm covariance

e Independent variables:

We define a linear operator U which describes s as linear combinations of the the modes
in comoving Fourier space:

s ="Us. (2)
The elements of s are the Fourier coefficients for the corresponding comoving Fourier
mode. Each coefficient s; is an independent random variable. For convenience, we refer
to the wave vector associated with s; as k;.

e The covariance matrix of § is denoted by S

S = (357) (3)

which is diagonal and

Sji = P(k;) = P(|k;j|). (4)
e Independent and identically distributed variables:
{5 | Ikl = k. (5)

The size of the set is denoted as Ny.




e The distribution of S is given by
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where o7 is effectively a variance estimation with s:
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The second line of eqn ([6) actually gives a distribution of p (P(k)|8). And we can sample
P(k) by drawing a realisation of the inverse Gamma distribution.

Sampling foreground covariance

e Independent variables:

— The foreground coefficients are denoted as f;,, where 7 is the index of the pixel and
n is the index of the frequency dependent foreground basis function. The tuple of
all coefficients is denoted by f.

— For each i we define a vector £@, which groups all foreground coefficients of the
same 7. The size of the vector is Nyoqes, the total number of basis functions.

— As the draft paper explains, £ follows a multivariate distribution:

FO~ N(FYF) (8)
where F is an Nyodes-by-Nmodes COVariance matrix.

— Different £ vectors are understood as different realisations of the same distribution.

e The conditional probability of F is given by

p(Elf) = Hp(F|f )
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is the scale matrix. The the mean values f(i) are estimated from £, then the denomi-
nator in this equation above should be replaced accordingly with the correct number of
degrees of freedom, which in most cases is Np;; — 1.
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e [ can then be sampled using the Inverse-Wishart distribution with
P = Nmodes> V= Npi]} —p— 1, (12)

where p is the size of the scale matrix and v is the number of degrees of freedom. Note that
degrees of freedom must be greater than or equal to the dimension of the scale matrix.



e “L” and “H” conventions for Cholesky decomposition
C=LL' =HH (13)
They differ in where the t is placed. (Note the difference in Numpy and Scipy defaults.)
e Consistent L conventions:

— Covariance
C = C:Czf n=Ciw n ~ N(0,C) (14)
— Inverse covariance
Cl=C:C0: w=C:n w ~ N(0,T) (15)
— The Cholesky decomposition is not unique. However, given the Cholesky decompo-
sition of a covariance matrix, you can always derive the Cholesky decomposition of
its inverse
C:=C'C? (c%)1 —C (16)
— Note that, given these definitions,

C i £ (cé)_l (17)

¢ In the GCR equations, given the above conventions, the C~2 term can be understood as
. 1
coming from C™'Czw



e Abstract:

d=MT +n M = FIMF (18)
e Detailed
dz,y,2) = Y Mz,y %2y, )Ty, ) + n(x,y,2)
I/7/y/7zl
- (19)
M(z,y, z2'y ) = > Fla,y, 2 ke, ky, k) Mk, by, k) F (ko by by 2!y )
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e Derived linear system with respect to M
d(z,y,2) = Z U(z,y, 2; kg, ky, k)M (kg ky, k) + 12,9, 2) (20)
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where

U,y 2 ko, by ko) = Y Fl(zy, 2iky, by, k) F (ki by, k2o, 2Ty ) (21)
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e By realising the speparable form the Fourier matrices, we obtain

U(z,y, 2; ke, by, k) = Z Fi(z; k,)F(y; k) ) F (2 k) F (ky, o) F (ky, v )F (K., 2T (2, ¢/, 2')
J/,/’y/’z/
= Fl(z; k) F (y; by )P (2 k)T (s Koy, K2
= F(w,y, 2 ko, by, bo) T (K, iy, )
(22)

The last equation means that U is the IDFT matrix whose columns are weighted by the
Fourier transform of T

def DFT_matrix(n):
# using the default norm
# check the internal consistency of normalisation in your code
return np.fft.fft(np.eye(n))

def tensor_product (*matrices):
result = matrices[0]
for matrix in matrices[1:]:
result = np.kron(result, matrix)
return result

DFT = DFT_matrix(32)
DFT_n3_matrix = tensor_product([DFT, DFT, DFT])

def m_projector(Temp_cube, DFT_n3_matrix):
Temp_fft_vec = np.fft.fftn(Temp_cube, axes=(0, 1, 2)).flaten()
U = DFT_n3_matrix.conj().T * Temp_fft_vec[np.newaxis, :]
return U # the output is a 2D matrix
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