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1 Introduction

Given an n-dimensional Gaussian realisation s, the covariance matrix follows the following
distribution

p (S|s) ∝ 1

|S| 12
exp

(
−1

2
(s− s̄)TS−1(s− s̄)

)
(1)

It is generally impossible to sample a rank-n covariance matrix with a single realisation of the
n-dimensional vector, since it is statistically underdetermined. However, it is usually the case
that there is significant degeneracy in S, and the number of degrees of freedom of S may be
less than n. For these cases, we can sample S with s using the following strategy:

1. Separate the independent variables.

2. Group the independent and identically distributed variables.

3. Estimate the variance of each distribution using different realisations.

4. Sample the covariance matrix

2 Sampling 21 cm covariance

• Independent variables:

We define a linear operator U which describes s as linear combinations of the the modes
in comoving Fourier space:

s = U s̃. (2)

The elements of s̃ are the Fourier coefficients for the corresponding comoving Fourier
mode. Each coefficient s̃j is an independent random variable. For convenience, we refer
to the wave vector associated with s̃j as kj.

• The covariance matrix of s̃ is denoted by S̃

S̃ ≡ ⟨s̃s̃T ⟩ (3)

which is diagonal and
S̃jj = P (kj) = P (|kj|). (4)

• Independent and identically distributed variables:{
s̃j

∣∣∣ |kj| = k
}
. (5)

The size of the set is denoted as Nk.
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• The distribution of S̃ is given by

p
(
S̃|s̃

)
∝ 1

|S̃| 12
exp

(
−1

2
s̃T S̃−1s̃

)
=

∏
k

[P (k)]−
Nk
2 exp

(
−1

2

σ2
k

P (k)

) (6)

where σ2
k is effectively a variance estimation with s̃:

σ2
k =

∑
|kj |=k

s̃∗j s̃j. (7)

The second line of eqn (6) actually gives a distribution of p (P (k)|s̃). And we can sample
P (k) by drawing a realisation of the inverse Gamma distribution.

3 Sampling foreground covariance

• Independent variables:

– The foreground coefficients are denoted as fi,n, where i is the index of the pixel and
n is the index of the frequency dependent foreground basis function. The tuple of
all coefficients is denoted by f .

– For each i we define a vector f (i), which groups all foreground coefficients of the
same i. The size of the vector is Nmodes, the total number of basis functions.

– As the draft paper explains, f (i) follows a multivariate distribution:

f (i) ∼ N (f̄
(i)
,F) (8)

where F is an Nmodes-by-Nmodes covariance matrix.

– Different f (i) vectors are understood as different realisations of the same distribution.

• The conditional probability of F is given by

p (F|f) =
∏
i

p
(
F|f (i)

)
∝

∏
i

1

|F| 12
exp

(
−1

2

(
f (i) − f̄

(i)
)T

F−1
(
f (i) − f̄

(i)
))

=
∏
i

1

|F| 12
exp

[
−1

2
Tr

(
F−1D(i)

)]
= |F|−

Npix
2 exp

[
−1

2
Tr

(
F−1D̃

)]
(9)

where

D(i) ≡
(
f (i) − f̄

(i)
)(

f (i) − f̄
(i)
)T

(10)

and

D̃ ≡ 1

Npix

Npix∑
i

D(i) (11)

is the scale matrix. The the mean values f̄
(i)

are estimated from f (i), then the denomi-
nator in this equation above should be replaced accordingly with the correct number of
degrees of freedom, which in most cases is Npix − 1.
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• F can then be sampled using the Inverse-Wishart distribution with

p = Nmodes, ν = Npix − p− 1, (12)

where p is the size of the scale matrix and ν is the number of degrees of freedom. Note that
degrees of freedom must be greater than or equal to the dimension of the scale matrix.
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• “L” and “H” conventions for Cholesky decomposition

C = LL† = H†H (13)

They differ in where the † is placed. (Note the difference in Numpy and Scipy defaults.)

• Consistent L conventions:

– Covariance

C ≡ C
1
2C

1
2
† n = C

1
2w n ∼ N(0,C) (14)

– Inverse covariance

C−1 ≡ C− 1
2C− 1

2
† w = C− 1

2
†n w ∼ N(0, I) (15)

– The Cholesky decomposition is not unique. However, given the Cholesky decompo-
sition of a covariance matrix, you can always derive the Cholesky decomposition of
its inverse

C− 1
2 = C−1C

1
2

(
C

1
2

)−1

= C− 1
2
† (16)

– Note that, given these definitions,

C− 1
2 ̸=

(
C

1
2

)−1

(17)

• In the GCR equations, given the above conventions, the C− 1
2 term can be understood as

coming from C−1C
1
2w
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• Abstract:

d = MT + n M = F†M̃F (18)

• Detailed

d(x, y, z) =
∑

x′,y′,z′

M(x, y, z;x′, y′, z′)T (x′, y′, z′) + n(x, y, z)

M(x, y, z;x′, y′, z′) =
∑

kx,ky ,kz

F†(x, y, z; kx, ky, kz)M̃(kx, ky, kz)F(kx, ky, kz;x
′, y′, z′)

(19)

• Derived linear system with respect to M̃

d(x, y, z) =
∑

kx,ky ,kz

U(x, y, z; kx, ky, kz)M̃(kx, ky, kz) + n(x, y, z) (20)

where

U(x, y, z; kx, ky, kz) =
∑

x′,y′,z′

F†(x, y, z; kx, ky, kz)F(kx, ky, kz;x
′, y′, z′)T (x′, y′, z′) (21)

• By realising the speparable form the Fourier matrices, we obtain

U(x, y, z; kx, ky, kz) =
∑

x′,y′,z′

F†(x; kx)F
†(y; ky)F

†(z; kz)F(kx, x
′)F(ky, y

′)F(kz, z
′)T (x′, y′, z′)

= F†(x; kx)F
†(y; ky)F

†(z; kz)T̃ (kx, ky, kz)

= F†(x, y, z; kx, ky, kz)T̃ (kx, ky, kz)

(22)

The last equation means that U is the IDFT matrix whose columns are weighted by the
Fourier transform of T :

def DFT_matrix(n):

# using the default norm

# check the internal consistency of normalisation in your code

return np.fft.fft(np.eye(n))

def tensor_product(*matrices):

result = matrices[0]

for matrix in matrices[1:]:

result = np.kron(result, matrix)

return result

DFT = DFT_matrix(32)

DFT_n3_matrix = tensor_product([DFT, DFT, DFT])

def m_projector(Temp_cube, DFT_n3_matrix):

Temp_fft_vec = np.fft.fftn(Temp_cube, axes=(0, 1, 2)).flaten()

U = DFT_n3_matrix.conj().T * Temp_fft_vec[np.newaxis, :]

return U # the output is a 2D matrix

5


	Introduction
	Sampling 21 cm covariance
	Sampling foreground covariance

