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Abstract

The transfer equations for physical quantities are often derived from first principles, and thus
these equations are inherently local due to the local nature of the interactions. However, in
cosmological theories and observations, coarse-grained treatments are sometimes unavoidable.
It is often possible to discuss the dynamics of coarse-grained physical quantities in terms of
these local first-principles equations, but this is not always correct. Take, for example, the
radiative transfer equation, which accurately describes the intensity of radiation along a single
propagation path, but the same differential equation does not necessarily describe the evolution
of the average over multiple light paths. For this reason, I am puzzled by the many 21cm
papers that discuss the global signal by binning, using averaged parameters, assuming constant
absorption coefficients, and so on. In this note I will show that we need to know not only the
mean radiative parameters but also their fluctuations in order to describe the evolution of the
average (or global) signal.

Eqn (11]) shows a modified radiative transfer equation (though in the form of an integral),
where the first term is the usually considered radiative damping (dissipation) term, while the
second and third terms are the usually overlooked leading order corrections, which can be
understood as the contribution to the intensity from the ensemble variance (fluctuation). This
formalism could be used as a refined treatment of the dynamics of the global 21cm signal, etc.

1 Evolution of the LOS signal

The radiative transfer equation:

dl
— = _—al i 1
ds al + 7, ()

where a = «(s) and j = j(s) are general radiative coefficient functions that depend on various
environmental parameters that depend on the affine parameter s.

Integral expression

For convenience we can define
S a(s)ds’
p(s) = el (2)

then the radiative transfer equation can be rewritten as

The general solution is




or more explicitly,
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where the reference point s; has been chosen such that I(s;) = 0. In other words, j(s;) is the
injection of the first lights.

Taylor expansion

We now expand the above expression

e Pivot values:
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where the overbar indicates averaging over directions, for example,
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Consequently, we have [ dj(s, Q) dQ = 0.
e We also define

S

@(S”) ds” +

9
—~
CIJ\
\‘CIJ
>
SN—
I
T
»
o
—~
CIJ\
ol
SN—
o,
cn\
|
—~
0.0)
N—

7(s',s) +

e The exponential (damping) term in Eqn (5)) can be expanded as
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2 Evolution of the directional averaged signal

After averaging Eqn over a wide field for all directions, we get
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where we have omitted the third and higher order terms. The last term in the above equation
is kept because it is usually the case that 67 and d7 have some parameters in common, i.e.
some of their terms might be correlated.
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