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Abstract

This note adopts a somewhat cumbersome but well-defined approach to the expansion of the
Radio Interferometer Measurement Equation (RIME). We describe the integrals (and also the
decompositions) in RIME in terms of antenna coordinates, but stipulate that all spherical
harmonic expansions are defined on the same static basis in the celestial system.

The result of this procedure is that: the expansion for a steady sky field remains unchanged;
and the expansions for the beam and fringe vary with time; but for a drift scan, the only
difference between the same mode at different times is a phase, e±im∆t (the sign depends
on whether Yℓm or Y ∗

ℓm is used for the expansion). Therefore, RIME at any time can be easily
decomposed into the modes defined at a reference time. This is the essence of the m-mode. Since
it is only required that the SH basis be sky-static, its choice (or rotation) can be arbitrary. In
practical analysis we can choose a special basis that is completely coincident with the standard
antenna SH basis at the reference time.

Key equations:

1. Eqn (13) shows the projection from the sky modes to the temporal data, in terms of the
modes of the modulated beam.

2. Eqn (14) shows the projection from the sky modes to the m-mode data. The operator is
just the SH coefficients of the modulated beam.

3. Eqn (22) shows the projection from the sky modes to the m-mode data, in terms of
the modes of the primary beam and the fringe pattern. (The equation (20) defines the
operator - I think it is tractable?)

1 Notations and conventions

• For a field point on the sphere:

– n̂a is its coordinates in an antenna-static (or ground-static) system.

– n̂s denotes the sky-static (or celestial) coordinates.

• An interferometric measurement (a.k.a. RIME):

V (bij, ν, t) =

∫
d2Ω Ai(n̂a, ν)A

†
j(n̂a, ν) T (n̂s, ν) e−2πiντij(n̂a) (1)

Beam (B) Sky (T) Fringe (F)

Modulated Beam (M)
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– Each component of the equation is expressed in the system where it is static:

∗ Both the beam and fringe parts vote for n̂a, while the stationary sky intensity
field prefers n̂s.

∗ 2 : 1 on the scoreboard, so we usually take the measurement as integral with
respect to n̂a for convenience.

·
∫
d2Ω ≡

∫
d2n̂a

· n̂s is therefore understood as a function of n̂a and t, the local sidereal time.

– The n̂a −→ n̂s mapping can be expressed by a rotation operator

n̂s = n̂s(n̂a, t) = R(t)n̂a, (2)

whose inverse mapping is given by

n̂a = n̂a(n̂s, t) = R−1(t)n̂s. (3)

– Earth rotation changes the mapping between n̂s and n̂a. For a drift-scan antenna,

∗ The n̂s(n̂a, t) coordinates of the same n̂a at different times are related as follows

n̂s(n̂a, t2) = R(t2)n̂a

= Rz(t2 − t1)R(t1)n̂a = Rz(t2 − t1) n̂s(n̂a, t1)
(4)

where Rz represents the rotation of the azimuth (in the celestial system) and
(t2 − t1) is the rotation angle (in radians).

∗ Correspondingly, the n̂a(n̂s, t) coordinates of the same n̂s at different times have
the following relation

n̂a(n̂s, t2) = R−1
z (∆t) n̂a(n̂s, t1) (5)

• Product of two or three fields

– ‘MT’ Interpretation: Measurement as the inner product of two fields, the modulated
beam (‘M’) and the temperature sky (‘T’).

– ‘BFT’ Interpretation: Measurement as the product of three fields, the primary beam
(‘B’), the fringe (‘F’) and the sky (‘T’).

Sky static spherical harmonics in antenna coordinates

• To study the statistics of sky fields, we consider the spherical harmonic (SH) basis fixed
on the celestial sphere.

– The basis as functions of sky coordinates are independent of time, whereas in antenna
coordinates they are in rotation from time to time:

Yℓm = Yℓm(n̂s) = Yℓm(R(t)n̂a).

– In drfit-scan mode, the spherical harmonic in the antenna coordinates at any time
can be expressed in terms of the harmonics at a reference time tref as follows

Yℓm(R(t)n̂a) = Yℓm(Rz(t− tref)R(tref)n̂a)

=
∑
m′

Dℓ
m′m(t− tref , 0, 0)Yℓm′(R(tref)n̂a)

= Yℓm(R(tref)n̂a)e
im(t−tref)

(6)

where the second equality has applied the Wigner D matrices to account for Rz(t−
tref).
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Antenna field decomposition with sky static spherical harmonics

Next we decompose a field in the antenna system, for example the beam intensity B(n̂a), on
an SH basis Yℓm (or Y ∗

ℓm) fixed to the sky:

B(n̂a) =
∑
ℓm

Bℓm(t)Yℓm(n̂s), (7)

where n̂s = R(t)n̂a and

Bℓm(t) ≡
∫

d2ΩB(n̂a)Y
∗
ℓm(n̂s). (8)

As a result of eqn (6) we have

Bℓm(t)e
im(t−tref) = Bℓm(tref), (9)

or equivalently,

B(n̂a) =
∑
ℓm

Bℓm(tref)Yℓm(n̂s)e
−im(t−tref). (10)

2 M-mode formalism (MT interpretation)

Now we expand the modulated beam and temperature sky with Y ∗
ℓm and Yℓm respectively.

M(n̂a) =
∑
ℓm

Mℓm(tref)Y
∗
ℓm eim(t−tref), (11)

T(n̂s) =
∑
ℓm

Tℓm Yℓm. (12)

This method of expansion was chosen for ease of later notations. Substituting the above
equations into RIME, we get

V (bij, ν, t) =

∫
d2ΩM(n̂a)T(n̂s)

=
∑
ℓm

∑
ℓ′m′

Tℓm Mℓ′m′(tref) e
im′(t−tref)

∫
d2ΩYℓmY

∗
ℓ′m′

=
∑
m

(∑
ℓ

Tℓm Mℓm(tref)

)
eim(t−tref)

(13)

Since V (bij, ν, t+2π) = V (bij, ν, t) is periodic, the last equality of eqn (13) is the Fourier series
expansion of V (bij, ν, t) as a function of time. In other words,

Ṽm(bij, ν) =
∑
ℓ≥m

Tℓm Mℓm(tref) (14)

where Ṽm(bij, ν) represents the Fourier coefficients of the time series data,

Ṽm(bij, ν) ≡
1

2π

∫ tref+2π

tref

V (bij, ν, t)e
−imtdt. (15)

The formalism discussed in this section is also known as the m-mode analysis.
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3 M-mode formlism (BFT interpretation)

In some scenarios we want to separate the roles of beam and fringe when projecting sky modes
into visibility space. Of course that can be done by directly decompose each of the three fields
and then there product is the sum a number of Gaunt’s integrals,∫

d2ΩYℓ1m1Yℓ2m2Yℓ3m3 =

(
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4

) 1
2
(
ℓ1 ℓ2 ℓ3
0 0 0

)(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)
≡ G(ℓ1, ℓ2, ℓ3;m1,m2,m3).

(16)

However, since we have already expressed the measurement in terms of Tℓm and Mℓm (see
eqn (13)). We can simply first rewrite Mℓm in terms of beam and fringe modes, and then
substitute it into the m-mode RIME. Working this out helps to understand the role played by
beam and fringe in m-mode analysis.

By definition, we have

Mℓm(tref) =

∫
d2ΩM(n̂a)Yℓm(n̂s) =

∫
d2ΩB(n̂a)F(n̂a)Yℓm(n̂s). (17)

We define the SH modes of B and F with Y ∗
ℓm:

Bℓm(tref) ≡
∫

d2ΩB(n̂a)Y
∗
ℓm(n̂s), Fℓm(tref) ≡

∫
d2ΩF(n̂a)Y

∗
ℓm(n̂s). (18)

Then eqn (17) can be rewritten as

Mℓm(tref) =
∑
ℓ1m1

∑
ℓ2m2

Bℓ1m1(tref)Fℓ2m2(tref)

∫
d2ΩYℓ1m1Yℓ2m2Yℓm

=
∑
ℓ1m1

∑
ℓ2m2

Bℓ1m1(tref)Fℓ2m2(tref)G(ℓ1, ℓ2, ℓ;m1,m2,m)
(19)

Since the selection rule
m1 +m2 +m = 0

must be fulfilled, eqn (19) actually only has three nested loops

Mℓm(tref) =
∑

l1≥|m1|

∑
l2≥|m1+m|

∑
m1

Bℓ1m1(tref)Fℓ2,−m1−m(tref)G(ℓ1, ℓ2, ℓ;m1,−m1 −m,m). (20)

We can further write Fℓ2m2(tref) in the plane wave expansion, which gives

Fℓm(tref) = 4π(i)ℓjℓ(2πu)Yℓm (R(tref)ûa) . (21)

where u = |bij/λ|, and ûa is the baseline directional coordinates in the antenna system. R
transforms them to the sky coordinates.

Substituting eqn (20) into eqn (14), we have

Ṽm(bij, ν) =
∑

l1≥|m1|

∑
l2≥|m1+m|

∑
m1

∑
ℓ≥|m|

TℓmBℓ1m1Fℓ2m2 G(ℓ1, ℓ2, ℓ;m1,−m1 −m,m), (22)

where it may be worth emphasising again that the Fℓm and Bℓm are evaluated in the Antenna
system using the Sky-static SH basis at tref , and the m-mode data is defined over (tref , tref+2π)!
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