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Abstract

This note reviews power spectrum estimation with maximum likelihood (Jacobian/Hessian
formalism), with an explicit focus on error propagation and covariance matrix construc-
tion, and extends methods for quadratic power spectrum estimation, including context-
dependent optimal quadratic estimators.
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1 Maximum likelihood power spectrum estimation

1.1 ML Estimate

1.1.1 Likelihood function

• The likelihood function reads

L = (2π)N/2 [det(C)]−1/2 exp

[
−1

2
x†C−1x

]
(1)

where x is the data vector and C is the covariance matrix of the data vector.

• For convenience we define the log-likelihood as

L = −2 lnL (2)

such that maximizing L is the same as minimizing L. Ignoring the constant
term in L, it derives

L = ln [det (C)] + Tr(C−1D) (3)

where D = xx†.

1.1.2 Parameterisation with band power

We use a set of band power {pα} to parameterise the covariance matrix C such that

C =
∑
α

pαQα +N, (4)

where pα are scalar parameters and Qα are the response matrices which can be
understood as the covariance matrices of unit cosmological band powers. N is the
noise (instrumental noise + foregrounds) covariance matrix.

1.1.3 Jacobian and Hessian

Perturb L by making variations on the parameters. Then the perturbation on the
covariance matrix reads

δC =
∑
α

δpαQα (5)
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The perturbation on the log-likelihood in terms of δC is

δL = Tr
[
C−1δC(I − C−1D)

]
+ Tr

[
C−1δCC−1δC(C−1D − 1

2
I)

]
+O

(
δC3

)
(6)

Rewrite the perturbation in terms of δpα:

δL =
∑
α

δpα Tr
[
C−1Qα(I − C−1D)

]
+
∑
α,β

δpαδpβ Tr

[
C−1QαC

−1Qβ(C
−1D − 1

2
I)

]
+O

(
δp3

)
(7)

The above expression has given the first and second order perturbations, which are

1st order derivatives (Jacobian): Jα = Tr
[
C−1Qα(I − C−1D)

]
(8)

2nd order derivatives (Hessian): Hαβ = 2Tr

[
C−1QαC

−1Qβ(C
−1D − 1

2
I)

]
(9)

1.1.4 Maximum likelihood estimate

The maximum likelihood estimate of the band power values can be obtained using
the derived Jacobian and Hessian. A general tip is to make the most of the block
diagonal structure in C (e.g., m-mode visibility of drift-scan surveys - assuming the
m-homogeneous statistics), then different additive terms in the log-likelihood can be
calculated in parallel.

1.2 Error in the estimation

How accurately can we estimate model parameters from a given data set? Fisher an-
swered in 1935. He laid the foundation for understanding the accuracy of parameter
estimation through the concept of Fisher information, which quantifies the amount
of information a dataset provides about unknown model parameters. Here are some
key concepts:

• Fisher Information Matrix (FIM):

I(θ)ij = −E
[

∂2

∂θi∂θj
log f(X; θ)

]
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Alternatively expressed as the covariance of the score function:

I(θ) = E

[(
∂

∂θ
log f(X; θ)

)(
∂

∂θ
log f(X; θ)

)⊤
]

• Cramér-Rao Lower Bound (CRLB): For any unbiased estimator θ̂:

Var(θ̂) ≥ 1

I(θ)

For multiple parameters, the covariance matrix satisfies:

Cov(θ̂) ≽ I−1(θ)

where ≽ means that the matrix Cov(θ̂)− I−1(θ) is positive semi-definite.

• Maximum Likelihood Estimation (MLE): Asymptotic properties:

θ̂MLE
d−−−→

n→∞
N

(
θ, I−1(θ)

)
where

d−→ denotes convergence in distribution. In other words, MLE achieves
the CRLB asymptotically under regularity conditions.

• Accuracy and Sample Size: Fisher information scales linearly with sample
size n for independent data:

I(θ) ∝ n ⇒ SE(θ̂) ∝ 1√
n

where ‘SE’ stands for ‘Standard Error’.

1.2.1 Error in band power

Calculating the curvature or Hessian could be numerically cumbersome, whereas we
can effectively calculate the quadratic form of the first-order derivatives instead. To
prove this, we start with the normalisation condition∫

L(x; p) dnx = 1, (10)
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where p = p1, . . . , pm. Differentiating this equation gives∫
∂L(x; p)

∂pi
dnx = 0 (11)

which can be rewritten as∫
∂ lnL
∂pi

L dnx = 0 ⇔
〈
∂ lnL(x; p)

∂pi

〉
= 0. (12)

Differentiating it one more time we obtain∫
∂2 lnL
∂pi∂pj

L+
∂ lnL
∂pi

∂ lnL
∂pj

L dnx = 0 (13)

or equivalently 〈
∂2 lnL
∂pi∂pj

〉
= −

〈
∂ lnL
∂pi

∂ lnL
∂pj

〉
. (14)

This equation states that the expected curvature of the likelihood function is equiv-
alent to the expected value of the quadratic form of the first order derivatives.

1.2.2 Error in derived parameter

Since the model parameters (say the band power values) fully characterise the statis-
tics, any quantity derived from the statistics can be estimated by viewing it as a
function of these parameters.

Suppose the set of quantities to be estimated is Ω(p), for which Ω̂ is the set of
unbiased estimators, which means〈

Ω̂
〉
=

∫
Ω̂L dnx = Ω(p). (15)

Differentiating this equation gives

∂Ω(p)

∂pi
=

∫
Ω̂
∂L
∂pi

dnx =

∫
Ω̂
∂ lnL
∂pi

L dnx =

〈
Ω̂
∂ lnL
∂pi

〉
. (16)

There is no harm to rewrite this equation as

∂Ω(p)

∂pi
=

〈
(Ω̂−Ω)

∂ lnL
∂pi

〉
(17)
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because
〈
Ω∂ lnL

∂pi

〉
= Ω

〈
∂ lnL
∂pi

〉
= 0.

To establish a lower bound on the covariance of the estimators, we compute

∂Ω

∂pi

∂Ω

∂pj
=

〈
(Ω̂−Ω)

∂ lnL
∂pi

〉〈
(Ω̂−Ω)

∂ lnL
∂pj

〉
(18)

Remembering the Cauchy Inequality that the inner product is no greater than the
product of the modules, i.e.,

(f · g)2 ≤ f 2g2, (19)

or explicitly, (∫
fgL dnx

)2

≤
(∫

f 2L dnx

)(∫
g2L dnx

)
, (20)

thus ∫
fgL dnx ≤

√∫
f 2L dnx

∫
g2L dnx, (21)

which then reads
⟨fg⟩ ≤

√
⟨f 2⟩ ⟨g2⟩. (22)

Now we can obtain a lower bound for the estimator covariance:

∂Ω

∂pi

∂Ω

∂pj
=

〈
(Ω̂−Ω)

∂ lnL
∂pi

〉〈
(Ω̂−Ω)

∂ lnL
∂pj

〉

≤
〈
(Ω̂−Ω)2

〉√√√√〈(
∂ lnL
∂pi

)2
〉〈(

∂ lnL
∂pj

)2
〉
.

(23)
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2 Quadratic Estimation of the Power Spectrum

2.1 Overview

Quadratic estimators provide an optimal framework for measuring the power spec-
trum from noisy cosmological data, particularly in 21 cm cosmology where foreground
contamination dominates. The key concepts are summarised as follows:

• Data Vector Formalism: The observed data vector x relates to the under-
lying signal through:

x = s+ n (24)

where s is the cosmological signal and n represents noise/systematics.

• Covariance Matrix Structure: The data covariance matrix C ≡ ⟨xx†⟩
decomposes as:

C = N+
∑
α

pαQα (25)

where N is the noise covariance, pα ≡ P (kα) are bandpowers, and Qα ≡ ∂C
∂pα

is
the response matrix.

• Estimator Definition: The quadratic estimator for bandpower pα takes the
form:

p̂α ∝ x†Eαx− bα (26)

where Eα encodes Fourier mode weighting and bα ≡ Tr(EαN) removes noise
bias.

• Window Functions: The estimator’s spectral resolution is characterized by:

Wαβ = Tr(EαQβ) (27)

quantifying leakage between k-bins.

2.2 A linear mapping perspective

• Data space and signal space:

The data vector (x) and its components (xs and xn) are vectors in the data
space, D:

x = xs + xn (28)

x,xs,xn ∈ D (29)
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where the data space signal component xs can be understood as the linear
map of a vector s in the signal space (S):

xs = Us S ≡ span{ŵ1, · · · , ŵds}
s ∈ S U : S 7→ D

where we interpret ŵα as a unit-normalized, binned Fourier mode of the
signal field. Correspondingly, the response matrix Qα is given (in linear
algebra) by

Qα ≡ Uŵαŵ
†
αU

†. (30)

• What is the band power pα?

Signal space viewpoint : the ensemble average of the squared projection of s
on ŵα,

pα ≡ ⟨|s†ŵα|2⟩ = ⟨s†ŵαŵ
†
αs⟩. (31)

Data space viewpoint : Similar to the above, but now projecting onto the image
of ŵα in the data space, 1

⟨|x†
sUŵα|2⟩
|Uŵα|2

=
⟨x†

sUŵαŵ
†
αU

†xs⟩
ŵ†

αU
†Uŵα

=
Tr(QαCs)

Tr(Qα)
=

∑
β

Wαβpβ, (32)

where Cs ≡ ⟨xsx
†
s⟩ is the covariance matrix of the signal component, and

Wαβ ≡ Tr(QαQβ)/Tr(Qα) is the window function. Note that Wαβ doesn’t
vanish in general. To avoid the mixing effect, one can first project data
onto the space orthogonal to other modes, and then project onto the data
space signal mode Uŵα.

2.3 Unbiased estimate with vector space structure

• Unbiased estimate of the windowed band power, qα =
∑

β Wαβpβ :

q̂α =
Tr(QαĈs)

Tr(Qα)
. (33)

– Theoretically, we have
Cs = C−N, (34)

but neither C nor N are known.
1 Note that this normalization assigns a coefficient of 1 to the α-mode, rather than scaling the

coefficients to sum to 1.
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– A derived estimate of Cs is

Ĉs = xx† − N̂, (35)

where xx† is an instance/estimate2 of C and N̂ is an estimate of N̂. So,
if N̂ constitutes an unbiased estimator for the noise covariance matrix,
the derived signal covariance estimate Ĉs will consequently preserve this
unbiasedness.

• Unbiased estimate with arbitrary weights:

– Assume that we performed further data projections in the data space and
we are using the projected data for the power spectrum estimation:

x′ = Ex. (36)

The windowed band power is then understood as

q′α =
Tr(E†EQαE

†ECs)

Tr(EQαE†)
, (37)

or written in the more familiar form,

q′α =
Tr(ẼQαẼCs)

Tr(QαẼ)
, Ẽ ≡ E†E. (38)

Here we have used the “′” to denote the changed window:

q′α =
∑
β

W ′
αβpβ, Wαβ ≡ Tr(ẼQαẼQβ)/Tr(QαẼ). (39)

– Consequently, the unbiased estimate is given by

p̂α =
Tr

[
ẼQαẼ(xx

† − N̂)
]

Tr(QαẼ)
, (40)

which, again, conditional on the unbiasedness of N̂.

2 Ideally, even though a data set captures a single instance of the sky field, it contains many
redundant modes of the same statistic, so that the sample variance of the statistical parameters is
suppressed.
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2.4 Optimal estimate in different contexts

Thus far our analysis has utilized only the vector space properties inherent in the
linear framework. However, the weighting matrix in unbiased estimation contains
sufficient degrees of freedom to enable the construction of optimal estimators under
different statistical criteria.

2.4.1 Minimum variance with Hilbert space structure

We now extend this foundation by endowing the linear spaces with metric structure
- specifically through the formal introduction of Hilbert space inner products:

This enriched framework enables the rigorous definition of minimum-variance
estimators, which are mathematically equivalent to solving generalized least squares
optimization problems.

But wait, even “minimum variance” could mean different things:

• If we want to minimise the total variance, including the sampling variance of
the signal modes as well as the noise variance:

E = C− 1
2 (41)

• If only to minimise the total noise variance, the weighting matrix will be

E = N− 1
2 (42)

• If necessary, we can further distinguish the foreground variance, instrumental
variance, etc...

2.4.2 Optimal estimate in different contexts

The formalism generalizes to arbitrary linear projections, not limited to minimum-
variance estimators. Two illustrative cases demonstrate this flexibility:

1. Projection onto the null space of systematics

Given a eigendecomposed form of N

N = ni

r∑
i=1

µ̂iµ̂
†
i , (43)
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then the “minimal systematic” projection is given by

E = Ei

Nd∑
i=r+1

µ̂iµ̂
†
i , (44)

where Ei are non-zero values that can be optimised to minimise variance.

2. Project onto the non-principle modes (in PCA analysis)

PCA method in power spectrum estimation can also be understood in this
framework. It effectively regards the linear space spanned by the non-principle
modes of C as a signal-dominated space:3

E = 1−
nPCA∑
i=1

êiê
†
i =

Nd∑
i=nPCA

êiê
†
i (46)

Note that different “optimal” operations (minimum variance, systematic avoid-
ance, PCA filter, etc.) can be combined to serve multiple purposes.

2.5 Summary

• Estimate: a band power estimate can be simply understood as the squared
projection onto the mapped signal basis vector.

• Window function: other modes could have nontrivial projections.

• Weighting: weights and additional projection can be multi-purpose: the PCA
method of MeerKAT is just a special case.

• Optimal: when noise covariance is given, we can obtain minimum variance,
that’s understood as general least squares. . .

3 This projector possesses several nice properties, Hermitian and the ‘power idempotence’:

E† = E,Rn = R, for n = 1, 2, . . . . (45)

Its Fourier-space counterpart, R̃, inherits all of these properties (up to the normalisation of the
Fourier transform).
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A Cosmological Observables

The Baryon Acoustic Oscillations (BAO) in the radial and tangential directions
derive different cosmological observables. The radial BAO measures the Hubble
parameter, H ≡ ȧ/a, where a is the scale factor. The BAO in the tangential direction
provide measurements of the angular diameter distance, DA.

The Friedmann equation is

H2(z) =
8πG

3

[
ρ(z) +

ρcr − ρ0
a2(z)

]
(47)

where G is the Newton’s constant, ρ(z) is the energy density in the universe at
redshift z with ρ0 its present value, ρcr = 3H2

0/(8πG) is the critical density.
If the mean mass density is dominated by non-relativistic matter, the Friedmann

equation gives

E(z) ≡ H(z)

H0

=
√

Ωm(1 + z)3 + ΩR(1 + z)2 + ΩΛ (48)

where Ωm, ΩR and ΩΛ are fractional contributions to the present value of Hubble’s
constant H0 by the present mean mass density ρ0, the radius of curvature a0R and
the cosmological constant Λ, which reads

Ωm =
8πGρ0
3H2

0

, ΩR =
1

(H0a0R)2
, ΩΛ =

Λ

3H2
0

. (49)

The way to constrain cosmological observables using BAO are essentially through
distance measurements rather than direct measurement of the Hubble parameter.

A.1 Distances

Below we formulate the distances with explicit dependence on the frequency ν:

1. Comoving distance (radial)

redshift zν :

1 + zν =
ν21
ν

(50)

radial comoving distance DC (or rν):

rν = DC(zν)

≡ c

H0

∫ zν

0

dz

E(z)

=
c

H0

∫ zν

0

dz√
Ωm(1 + z)3 + ΩR(1 + z)2 + ΩΛ

(51)
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2. Comoving distance (transverse)

DM =


DH

1√
ΩR

sinh
[√

ΩRDC/DH

]
, for ΩR > 0

DC , for ΩR = 0

DH
1√
|ΩR|

sin
[√

|ΩR|DC/DH

]
, for ΩR < 0

(52)

where DH = c/H0 is the Hubble distance, and DC is the comoving dis-
tance.

3. Angular diameter distance

DA =
DM

1 + z
(53)

where DM is the transverse comoving distance.

A.2 Comoving space PS to configuration space variance

The two point correlation function of the signal field in the configuration space can
be represented in terms of the cosmological power spectrum:

⟨I21(Θ, rν +∆r)I
∗
21(Θ

′, rν +∆′
r)⟩

=

∫
d3k P21(k⊥, k∥) exp

[
ik⊥ · r⊥ + ik∥r∥

]
=

∫
d3k P21(k⊥, k∥) exp

[
ik⊥ ·DA(Θ

′ −Θ) + ik∥(∆
′
r −∆r)

]
=

∫
d3k P21(k⊥, k∥) exp

[
ik⊥ ·DA(Θ

′ −Θ) + ik∥α(∆
′
ν −∆ν)

]
(54)

where, for a flat universe,

DA =
DM

1 + z
=

DC

1 + z
=

rν
1 + zν

, (55)

and

α =
drν
dν

=
drν
dz

dz

dν
=

−ν21c/H0ν
2√

ΩΛ + Ωm(1 + zν)3
. (56)
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