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1 The Polarized Sky

The total intensity of the synchrotron emission coming from a volume element
dV = s2 dsδΩ in a frequency interval δν is given by the emission coefficient
jI(s, n̂, ν), which can be written as

jI(s, n̂, ν) = CI

(
2πmec

3e
ν

) 1−p
2

nCRB
p+1
2

⊥ , (1)

where nCR is the cosmic ray electron density, B⊥ is the transverse galactic
magnetic field and we are assuming a power law energy distribution for the CR
electrons N(E) ∝ E−p. The coefficient CI is given by

CI =

√
3e3

4πmec2(p+ 1)
Γ

(
3p− 1

12

)
Γ

(
3p+ 19

12

)
. (2)

As the synchrotron photons undergo Faraday rotations, the observed polar-
ization angle and the initial polarized angle are related by φ = φ0+ψ(s, n̂)(c/ν)2,
where ψ is the Faraday rotation measure, given as

ψ(s, n̂) =
e3

2π(mec2)2

∫ s

0

ne(s
′, n̂)B‖(s

′, n̂) ds′. (3)

Thus, the polarized synchrotron intensity can be written as

IP (ν, n̂) = Π0

∫ ∞
0

jI(s, n̂, ν)e2iφ0(s,n̂)eiψ(s,n̂)xν ds, (4)

where xν = 2(c/ν)2.
If we use the Faraday depth ψ(s, n̂) as LOS coordinate, instead of s, then

we can rewrite the polarized intensity as

IP (ν, n̂) =

∫
k(ψ, n̂, ν)eiψxν dψ, (5)

where k(ψ0) =
∫
δ(ψ(s) − ψ0)jI(s)e

2iφ0(s) ds is the collective emission from
regions with Faraday depth ψ.
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2 Model assumptions

The galactic synchrotron model used in Alonso 2014 bases on the following
assumptions:

1. The spectral dependence of the emission is basically the same at all depths
and can be factorized:

k(ψ, n̂, ν) = b(n̂, ν)k0(ψ, n̂), (6)

where b(n̂, ν) = (ν/νref )α(n̂).1

2. For each direction, ψ is normally scattered, in a mean-zero way with vari-
ance σ2(n̂), i.e.2,

the number of regions with ψ ∝ exp

[
−1

2

(
ψ

σ2(n̂)

)2
]
. (7)

3. The collective emission at some ψ is proportional to the number of regions
with that Faraday depth so that k0 is modeled as

k0(ψ, n̂) = B exp

[
−1

2

(
ψ

σ2(n̂)

)2
]
µ(ψ, n̂). (8)

4. The field µ(ψ, n̂) has the same angular structure as the unpolarized emis-
sion and it’s correlated in Faraday space on scales smaller than some
correlation length ξψ

〈µlm(ψ)µ∗l′m′(ψ
′)〉 ∝ δll′δmm′

(
lref
l

)β
e
− 1

2

[
ψ−ψ′
ξψ

]2
, (9)

5. µ̃(x), the Fourier transform of µ(ψ), are uncorrelated.

With the above assumptions one can rewrite the polarized intensity as

IP (ν, n̂) =

∫
B(ν/νref )α(n̂) exp

[
−1

2

(
ψ

σ2(n̂)

)2
]
µ(ψ, n̂)eiψxν dψ, (10)

where µ(ψ, n̂) is realized using assumptions 4 and 5. Thus, the goal of modeling
the sky breaks down to how to generate µ(ψ) with µ̃(x). I used both Alonso’s
and my own way to do this. Both are described as below.

1I use a full sky spectral index map as Alonso did.
2The variance is estimated from the Oppermann 2012 maps of ψ∞ by smoothing ψ2

∞ on a
large angular scale (Alonso 2014 has used 5 deg).
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3 Alonso’s simulation:
µ̃lm(x)

SHT−−−→ µ̃(x) maps −→ IP (ν, n̂)

In Alonso’s simulation, µ̃(x) is written as

µ̃(x) ≡
∫

dψ√
2π
µ(ψ)eiψx, (11)

which is uncorrelated for different values of x with variance l−βe−(ξψx)
2/2. Thus,

we can rewrite the polarized intensity as

IP (ν, n̂) =

∫
k(ψ, n̂, ν)eiψxν dψ

=

∫
b(ν, n̂)k0(ψ, n̂)eiψxν dψ

=

∫
b(ν, n̂)B exp

[
−1

2

(
ψ

σ(n̂)

)2
]
µ(ψ, n̂)eiψxν dψ

=

∫
b(ν, n̂)B exp

[
−1

2

(
ψ

σ(n̂)

)2
](∫

1√
2π
µ̃(x)e−iψx dx

)
eiψxν dψ

=

∫∫
b(ν, n̂)

B√
2π

exp

[
−1

2

(
ψ

σ(n̂)

)2
]
µ̃(x)e−iψxeiψxν dψ dx

=

∫
b(ν, n̂)

B√
2π
µ̃(x)

[∫
e−

1
2 ( ψ

σ(n̂) )
2

eiψ(xν−x) dψ

]
dx

=

∫
b(ν, n̂)

B√
2π
µ̃(x)

[√
2πσ2(n̂)e−2π

2σ2(n̂)( xν−x2π )
2]

dx

= b(ν, n̂)B′σ(n̂)

∫
µ̃(x)e

− (xν−x)2

2σ−2(n̂) dx

(12)

So what Alonso really did is, for each frequency,

1. Generating µ̃(x, n̂) maps using Gaussian random realizations with power

spectrum Cl ∝ l−βe−x
2ξψ

2/2;

2. Applying mask e
− (xν−x)2

2σ−2(n̂) ;

3. Numerical integration: integrating all x slices;

4. Multiplying trivial terms, b(ν, n̂) and σ(n̂), and doing normalization3.

Thus, we can get IP (ν, n̂) maps for each frequency frame using Alonso’s code.

3Assume a “reasonable” polarized fraction at high latitude regions and then normalize to
the Haslam map.
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4 Zhang’s simulation:

µ̃lm(x)
FFT−−→ µlm(ψ)

spinSHT−−−−−→ µ(ψ), k0(ψ) −→ IP (ν)

In Zhang’s simulation, µlm(ψ) is written as

µlm(ψ) ≡
∫
µ̃lm(x)e−2πiψx dx. (13)

Thus, the left hand side (LHS) of eq.(9) can be rewritten as

〈µlm(ψ)µ∗l′m′(ψ
′)〉 = 〈

[∫
µ̃lm(x)e−2πiψx dx

] [∫
µ̃∗lm(x)e2πiψ

′x dx

]
〉

≡
∫ +∞

−∞
〈µ̃lm(x)µ̃∗lm(x)〉 e−2πi(ψ−ψ

′)x dx

(14a)

(14b)

The identity of eq.(14a) and eq.(14b) is implied by the assumption 54 of Alonso’s
model. Using eq.(14), we can thus take the inverse Fourier transform with
respect to (ψ − ψ′) at both sides of eq.(9):

〈µ̃lm(x)µ̃∗lm(x)〉 ∝ l−β
√

2πξe−2π
2ξ2x2

, (15)

with constant terms dropped, it reads

〈µ̃lm(x)µ̃∗lm(x)〉 ∝ l−βe−2π
2ξ2x2

. (16)

Now we can get the explicit form of the Gaussian realization of µ̃lm(x) as

µ̃lm(x, p) ∝ Cp (X + iY) l−β/2e−π
2ξ2x2

, (17)

where X,Y ∼ N(0,1) are Gaussian random number generators, and p = B,E
denotes the B mode and E mode. Here, I simply set CB = CE = 1.

The next is to get µlm(ψ) out of µ̃lm(x) using the discrete form of eq.(13).
Then step further to get µ(ψ, n̂) maps from µlm(ψ)’s. In my simulation, I
produced µlm(ψ)’s for B mode and E mode separately, and then performed the
spin-2 spherical harmonic transform.

Appendices

A Input maps

B Documentation of Z. Zhang’s simulation

4Assumption 5 implies that, in order to realize Alonso’s model, one should do random
Gaussian realization for not only each lm-mode, but also each x-mode.
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