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Abstract

Correlated noise in radio interferometric measurements poses significant chal-
lenges for statistical science extraction in intensity mapping experiments. This work
addresses the critical need for a unified definition of sky modes across all data points
to enable consistent analysis of correlations in both raw measurements and derived
power spectra. While radio interferometric measurement equations (RIME) are in-
herently grounded in antenna-static coordinates, the nonlinear transformation be-
tween sky and antenna coordinates complicates the connection to universally de-
fined sky modes. To reconcile ground-based observational practicality with global
sky mode unification, we introduce a formalism based on three core components:
local beam, local fringe, and global sky. The framework establishes exact analytical
mappings between sky signals, observed data, and their covariances, with derivations
presented in spherical harmonic space and translated to Cartesian Fourier modes via
ℓ-to-k⊥ conversion.
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Chapter 1

Introduction

Correlated noise in the statistical measurements could be a problem in the science
extraction of intensity mapping experiments. In order to analyse correlations between
the radio interferometric measurements and between the power spectrum estimates,
it is instructive to establish a universally consistent definition of sky modes across
all data points.

Due to the nature of ground-based observations, the radio interferometric mea-
surement equations (RIME) are indeed best understood from a ground-based (i.e.,
antenna-static) perspective. However, direct application of the Fourier transform un-
derstanding inherent in visibility measurements presents a challenge: the resulting
sky Fourier modes are conjugate to antenna coordinates. The nonlinear transfor-
mation from sky coordinates to antenna coordinates makes it difficult to establish a
direct analytical connection between the derived sky modes and universally defined
sky modes (i.e. a common basis applicable to all data points).

To reconcile the practicality of ground-based interpretation with the unification
of sky mode definitions, this note introduces a formalism involving three key compo-
nents: local beam, local fringe, and global sky. The derivations are straightforward,
with the emphasis on explicitly identifying potential simplifications and defining the
concrete forms of linear mappings.
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Chapter 2

Covariance of radio interferometric
drift-scan measurements

2.1 Notations and Conventions

Coordinate

It is instructive to distinguish between the sky-static and antenna-static coordinate
systems. For a field point (a physical identity rather than coordinates) on the celestial
sphere:

• n̂a denotes the coordinate in the antenna system (i.e., static to the antenna).

In spherical coordinates, it is usually represented by the beam angles, (θa, ϕa).

• n̂s is the celestial coordinate, which in a spherical system is (θs, ϕs).

• The transformation between them is LST dependent and is given by a rotation
operator

n̂s(n̂a, t) = R(t)n̂a.

For now, it is fine to keep the operation abstract. It will be treated explicitly
later when we need to specify the representations of the rotations.

Beam and fringe

Below we present notations for antenna beams and fringes. We will also introduce
the spherical harmonic notation for practical use with the rotation transformation.
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• The primary beam is represented as

Bij(n̂a, ν) ≡ Ai(n̂a, ν)A
†
j(n̂a, ν) =

∑
ℓm

B
(ij)
ℓm (ν)Yℓm(n̂a) (2.1)

where B is the intensity beam and A is the far-field E-beam, and i and j are
antenna indices. Bℓm is the spherical harmonic coefficient, defined as the inner
product of the field and the spherical harmonic.

• The fringe pattern is given by

F (n̂a, bij, ν) ≡ e−i 2πν
c

bij ·n̂a =
∑
ℓm

Fℓm(bij, ν)Yℓm(n̂a) (2.2)

We can further work out a more explicit form for the primary beam and fringe modes.
For the primary beam modes B

(ij)
ℓ1m1

(ν), only the m1 = 0 modes survive if the primary
beam is invariant under rotations around the antenna axis:

B
(ij)
ℓ1m1

(ν) = 0, if m1 ̸= 0 (for rotationally symmetric beam). (2.3)

For the fringe modes, the plane wave e−iu·n̂a , where u is a vector in the tangent
plane at the pole of the antenna system1, can be expanded in terms of the spherical
harmonics using the plane wave expansion:

e−iu·n̂a =
∑
ℓ

(−i)ℓ(2ℓ+ 1)jℓ(u)Pℓ(û · n̂a) (2.4)

where u = 2πν
c
bij = u û and jℓ are the Bessel functions. The above equation effec-

tively gives
Fℓm(bij, ν) = 4π(−i)ℓjℓ(u)Y

∗
ℓm (û) . (2.5)

Recall that in the antenna coordinate system, b (and thus u) is parallel to the tangent
plane at the zenith, which means that û is given by (θu = π

2
, ϕu). As a consequence,

Y ∗
ℓm (û) is non-zero only if ℓ−m is even.

Sky

Since both the primary beam and the fringe are static to the antenna, I have tried
to represent them in n̂a to get rid of the time dependence. However, the stationary
sky prefers n̂s. A handy representation could be to use the sky modes Tℓm defined

1This is the case when the baseline vector is perpendicular to the zenith direction.
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with respect to n̂s, but transform the functional basis to the antenna system. Less
abstractly, we can represent the sky as

T (n̂s, ν) =
∑
ℓm

Tℓm(ν)Yℓm(n̂s) =
∑
ℓm

Tℓm(ν)Yℓm (R(t)n̂a)

=
∑
ℓmm′

Tℓm(ν)D(ℓ)
m′,m(R

−1(t))Yℓm′ (n̂a)
(2.6)

where D(ℓ)
m′,m is the Wigner D-matrix.

For the drift scanning measurements, the sky representation could be simpler:
we only need to connect the celestial coordinates with the antenna coordinates at a
reference time (without loss of generality, we set tref = 0 and denote R(tref) = R0).
Then the sky can be rewritten as

T (n̂s, ν) =
∑
ℓm

Tℓm(ν)Yℓm (R0n̂a) e
imt. (2.7)

Note that for this simplification to work, the celestial pole should be parallel to the
Earth’s rotation pole, and t should be rendered in units of radians.

2.2 Radio Interferometric Measurement Equation

A best-knowledge model for measurement is

V (bij, ν, t) = Gi(ν, t)G
†
j(ν, t)

γ(ν)

Ωij(ν)
Vth(bij, ν, t) (1 + ŵ) (2.8)

where Gi(ν, t) is the remaining gain error, γ(ν) is the down frequency taper function,
Ωij(ν) normalises the primary beam, and ŵ is the white noise given by the radiometer
equation, usually assumed to be Gaussian and stationary. Vth is the theoretical
visibility given by

Vth(bij, ν, t) =

∫
d2ΩAi(n̂a, ν)A

†
j(n̂a, ν)T (n̂s, ν) e

−i 2πν
c

bij ·n̂a . (2.9)

We haven’t specified the coordinate in which we do the integral. But of course we
should do it in the antenna coordinate:

Vth(bij, ν, t) =
∑
ℓm

Tℓm(ν)M
ℓm(bij, ν) (2.10)

M ℓm(bij, ν) ≡ eimt

∫
d2n̂a Bij(n̂a, ν)F (n̂a, bij, ν)Yℓm (R0n̂a) (2.11)
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which can be further expanded as

M ℓm(bij, ν) = eimt
∑
ℓ1m1

∑
ℓ2m2

B
(ij)
ℓ1m1

(ν)Fℓ2m2(bij, ν)

∫
d2ΩYℓ1m1(n̂a)Yℓ2m2(n̂a)Yℓm(R0n̂a)

= eimt
∑
ℓ1m1

∑
ℓ2m2

∑
m′

B
(ij)
ℓ1m1

(ν)Fℓ2m2(bij, ν)D
(ℓ)
m′,m(R

−1
0 )G(ℓ1, ℓ2, ℓ;m1,m2,m

′)

(2.12)

where we have applied the definition of the Gaunt’s integral∫
d2ΩYℓ1m1Yℓ2m2Yℓ3m3 =

(
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4

) 1
2
(
ℓ1 ℓ2 ℓ3
0 0 0

)(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)
≡ G(ℓ1, ℓ2, ℓ3;m1,m2,m3).

(2.13)

and remember that the Gaunt integral G is non-zero only if the selection rules are
satisfied:

• m+m1 +m2 = 0,

• ℓ+ ℓ1 + ℓ2 must be even, due to parity,

• ℓ, ℓ1, ℓ2 satisfy the triangle condition: |ℓi − ℓj| ≤ ℓk ≤ ℓi + ℓj.

The visibility equation can now be rewritten in the way that all components are
happy with their mode definitions:

Vth(bij, ν, t) =
∑
ℓm

Kℓm(bij, ν)Tℓm(ν)e
imt (2.14)

Kℓm(bij, ν) =
∑
ℓ1m1

∑
ℓ2m2

∑
m′

B
(ij)
ℓ1m1

(ν)Fℓ2m2(bij, ν)D
(ℓ)
m′,m(R

−1
0 )G(ℓ1, ℓ2, ℓ;m1,m2,m

′)

(2.15)

2.3 Data Covariance

We assume m-homogeneous statistics, where all Tℓm are independent realisations of
the ℓ-dependent statistics,

⟨Tℓm(ν)T
∗
ℓ′m′(ν ′)⟩ = δℓℓ′δmm′Cℓ(ν, ν

′). (2.16)
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Then the data covariance is straightforward to calculate:

⟨Vth(b, ν, t)V
∗
th(b

′, ν ′, t′)⟩ =
∑
ℓ

Kℓ(b, ν, t; b
′, ν ′, t′)Cℓ(ν, ν

′) (2.17)

Kℓ(b, ν, t; b
′, ν ′, t′) ≡

∑
m

Kℓm(b, ν)K
∗
ℓm(b

′, ν ′)eim(t−t′) (2.18)

Below are some important simplified cases:

1. If t = t′:

Kℓ(b, ν, t; b
′, ν ′, t) =

∑
ℓ1m1

∑
ℓ2m2

Bℓ1m1(ν)B
′∗
ℓ1m1

(ν ′)Fℓ2m2(b, ν)F
∗
ℓ2m2

(b′, ν ′)

· (2ℓ1 + 1)(2ℓ2 + 1)(2ℓ+ 1)

4

(
ℓ1 ℓ2 ℓ
0 0 0

)2

, (2.19)

where we have applied the unitarity of the Wigner D-matrix and a 3j-symbol
orthogonality:∑

m3

(
ℓ1 ℓ2 ℓ3
m1 m2 m3

)(
ℓ′1 ℓ′2 ℓ3
m′

1 m′
2 m3

)
=

1

2ℓ3 + 1
δℓ1ℓ′1δℓ2ℓ′2δm1m′

1
δm2m′

2
. (2.20)

2. If t = t′ and b = b′, we can further reduce the sum over m2 (actually we only
need b ∥ b′ to reduce this sum):

Kℓ(b, ν, t; b, ν
′, t) =

∑
ℓ1m1

∑
ℓ2

Bℓ1m1(ν)B
′∗
ℓ1m1

(ν ′)Fℓ2(b, ν, ν
′)

· (2ℓ1 + 1)(2ℓ2 + 1)(2ℓ+ 1)

4

(
ℓ1 ℓ2 ℓ
0 0 0

)2

, (2.21)

where Fℓ2(b, ν, ν
′) = 4π(2ℓ + 1)jℓ(u)jℓ(u

′) and, again, u is the wave number
given by the baseline and frequency.

3. If t = t′ and b ∥ b′ and the beam is rotationally symmetric, we can further
reduce the sum over m1:

Kℓ(b, ν, t; b, ν
′, t) =

∑
ℓ1

∑
ℓ2

Bℓ1,0(ν)B
′∗
ℓ1,0

(ν ′)Fℓ2(b, ν, ν
′)

· (2ℓ1 + 1)(2ℓ2 + 1)(2ℓ+ 1)

4

(
ℓ1 ℓ2 ℓ
0 0 0

)2

. (2.22)
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2.4 Linear maps of signals and covariances

The linear mapping in eq. (2.17)

Kℓ : Cℓ(ν, ν
′) 7→ data covariance (2.23)

can be used for defining a quadratic estimator of the delay power spectrum, which
is the ν-space Fourier conjugate of Cℓ(ν, ν

′)

The linear mapping in eq. (2.10)

Mℓm : Tℓm 7→ visibility data (2.24)

can be used for various purposes. It can also be thought of as a window function
where the peak-ℓ is determined by the baseline. In the context of quadratic power
spectrum estimation, it can be used to estimate the degree of the statistical indepen-
dence of different estimates, understanding the mixing of different m-modes, given
ℓ.

2.5 m-mode formalism for driftscan measurements

For drift-scan measurements, we see that the time dependence in the visibilities is
simply a phase term, and the rest are the m modes in the above formalism:

V =
ℓmax∑
m=0

Vm eimt Vm(b, ν) =
∑
ℓ

Kℓm(b, ν)Tℓm(ν)

whereKℓm is defined in eq (2.15), which can be precomputed. Then the linear system
can be represented using these m-mode visibilities as basic components:

V⃗ = UV⃗m, (2.25)

where U represents the transformations in terms of eimt. And the parameter space
covariance of the m modes is independent of time:

⟨Vm(b, ν)V
∗
m′(b′, ν ′)⟩ =

∑
ℓ

Kℓm(b, ν)Kℓm′(b′, ν ′)∗Cℓ(ν, ν
′), (2.26)
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where the r.h.s is something like KCK† for each ℓ-block. We can further represent
frequency angular spectrum as the Fourier transform of the delay spectrum:

E =
∑
ℓ

(KFPF†K†)ℓ, (2.27)

where E is the covariance matrix of the EoR m-mode visibilities, and P is a diagonal
matrix which represents the delay spectrum.
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